toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gallo Correspond, K.P.; Elvidge, C.D.; Yang, L.; Reed, B.C. url  doi
openurl 
  Title Trends in night-time city lights and vegetation indices associated with urbanization within the conterminous USA Type Journal Article
  Year 2004 Publication International Journal of Remote Sensing Abbreviated Journal International Journal of Remote Sensing  
  Volume 25 Issue 10 Pages 2003-2007  
  Keywords Remote Sensing  
  Abstract (down) Two datasets that depict the night-time light emitted from the conterminous USA during 1992/1993 and 2000 were compared for changes in light emission. The locations of observed differences in night-time light during this interval were examined for differences observed in a time-integrated vegetation index associated with net primary production. Just over 13% of the land area within the study region exhibited greater night-time light emitted in 2000 compared to 1992/1993. The locations of greater emitted light were found to have decreased values of the time-integrated vegetation index compared to locations that did not exhibit significant increases in emitted light. The observed decrease in the time-integrated vegetation index within the regions of greater emitted light is likely to be due to the change in land cover (increased urbanization) during this interval. The results suggest that the emitted light data were more useful for assessment of urban growth than the integrated vegetation index data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0143-1161 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2363  
Permanent link to this record
 

 
Author Walmsley, L.; Hanna, L.; Mouland, J.; Martial, F.; West, A.; Smedley, A.R.; Bechtold, D.A.; Webb, A.R.; Lucas, R.J.; Brown, T.M. url  doi
openurl 
  Title Colour As a Signal for Entraining the Mammalian Circadian Clock Type Journal Article
  Year 2015 Publication PLoS Biology Abbreviated Journal PLoS Biol  
  Volume 13 Issue 4 Pages e1002127  
  Keywords Animals; biology; color; circadian disruption; animal models; mouse models; Suprachiasmatic Nucleus; Photoperiod; twilight  
  Abstract (down) Twilight is characterised by changes in both quantity (“irradiance”) and quality (“colour”) of light. Animals use the variation in irradiance to adjust their internal circadian clocks, aligning their behaviour and physiology with the solar cycle. However, it is currently unknown whether changes in colour also contribute to this entrainment process. Using environmental measurements, we show here that mammalian blue-yellow colour discrimination provides a more reliable method of tracking twilight progression than simply measuring irradiance. We next use electrophysiological recordings to demonstrate that neurons in the mouse suprachiasmatic circadian clock display the cone-dependent spectral opponency required to make use of this information. Thus, our data show that some clock neurons are highly sensitive to changes in spectral composition occurring over twilight and that this input dictates their response to changes in irradiance. Finally, using mice housed under photoperiods with simulated dawn/dusk transitions, we confirm that spectral changes occurring during twilight are required for appropriate circadian alignment under natural conditions. Together, these data reveal a new sensory mechanism for telling time of day that would be available to any mammalian species capable of chromatic vision.  
  Address Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom  
  Corporate Author Thesis  
  Publisher PLOS Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1544-9173 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:25884537 Approved no  
  Call Number IDA @ john @ Serial 1152  
Permanent link to this record
 

 
Author Pena-Garcia, A.; Nguyen, T.P.L. url  doi
openurl 
  Title A Global Perspective for Sustainable Highway Tunnel Lighting Regulations: Greater Road Safety with a Lower Environmental Impact Type Journal Article
  Year 2018 Publication International Journal of Environmental Research and Public Health Abbreviated Journal Int J Environ Res Public Health  
  Volume 15 Issue 12 Pages  
  Keywords Lighting  
  Abstract (down) Tunnel lighting installations function 24 h a day, 365 days a year. These infrastructures have increased exponentially and now connect quite distant locations, even on different continents. This has led European administrations and international regulatory bodies to establish regulations for tunnel safety with the lowest environmental impact. However, until now, these regulations have almost exclusively focused on traffic safety, and relegated sustainability to the background. Even though they recognize the need to reduce energy consumption, they do not propose any tools for doing so. Given the impact of these installations and the lack of a specific regulatory framework, Asian countries will soon be forced either to update previous standards for tunnel lighting or elaborate new ones. A better understanding of the weaknesses of European regulations combined with a willingness to embrace innovation could position Asia as a world leader in the regulation of more sustainable road tunnels. The objective of this research was to improve the sustainability of tunnel lighting installations through new regulations or amendments to existing ones, without impairing the mental well-being of users, who could potentially be affected by energy-saving measures. Accordingly, this paper presents and analyzes a broad proposal for formulating tunnel lighting regulations. The originality of this proposal lies in the fact that it integrates road safety, lower environmental impact, and user well-being. Furthermore, it is expected to broaden the perspective of regulatory bodies and public administrations with regard to tunnel installations, which would ultimately enhance their sustainability.  
  Address Department of Development and Sustainability, School of Environment, Resources and Development, Asian Institute of Technology, 12120 Pathumthani, Thailand. phuoclai@ait.asia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1660-4601 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30486333 Approved no  
  Call Number GFZ @ kyba @ Serial 2119  
Permanent link to this record
 

 
Author Craine, E.R.; Craine, B.L.; Craine, P.R.; Craine, E.M. url  openurl
  Title The Light at Night Mapping Project: LAN MAP 1, the Tucson Basin Type Journal Article
  Year 2012 Publication Society for Astronomical Sciences 2012 (proceedings) Abbreviated Journal  
  Volume 31 Issue Pages 139-145  
  Keywords Skyglow  
  Abstract (down) Tucson, Arizona, once billed as the Astronomical Capital of the World, has long been home to at least ten major astronomical institutions and facilities. The region also hosts numerous productive amateur observatories and professional-amateur astronomical collaborations. In spite of the implementation of progressive night time lighting codes, the continued growth of the region has arguably deprived Tucson of its title, and threatens the future of some if not all of these facilities. It has become apparent that there are several difficulties in regulating this lighting environment. It is not easy to model the actual effects of new or changed lighting fixtures, there are compelling economic conflicts that must be considered, and adherence to various guidelines is often ignored. Perhaps the most fundamental problem is that there have historically been no comprehensive measures of either light at night or sky brightness over the extended growth areas. What measurements do exist are inhomogeneous and poorly accessible spot measurements at some observatory sites. These have little to tell us about the actual light distributions in the overall region, and rarely are informative of the specific light sources that offend the observatory sites. Tucson remains, for the time, an important astronomical resource. Because of its astronomical and lighting code circumstances, it is an interesting and valuable laboratory for studying these issues. In this paper we introduce an innovative new 5-year project to comprehensively map both sky brightness and associated artificial lighting over extended areas of development in the vicinity of important astronomical institutions. We discuss the various vectors employed in data collection; we outline the protocols used for each methodology, give examples of the data collected, and discuss data analysis and conclusions. This program has been underway since January 2012, and has already produced results of interest to professional and amateur astronomers alike.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 543  
Permanent link to this record
 

 
Author Pacheco-Tucuch, F.S.; Ramirez-Sierra, M.J.; Gourbiere, S.; Dumonteil, E. url  doi
openurl 
  Title Public street lights increase house infestation by the Chagas disease vector Triatoma dimidiata Type Journal Article
  Year 2012 Publication PloS one Abbreviated Journal PLoS One  
  Volume 7 Issue 4 Pages e36207  
  Keywords Animals; Human Health  
  Abstract (down) Triatoma dimidiata is one of the primary vectors of Chagas disease. We previously documented the spatio-temporal infestation of houses by this species in the Yucatan peninsula, Mexico, and found that non-domiciliated triatomines were specifically attracted to houses. However, the factors mediating this attraction remained unclear. Artificial light has been known for a long time to attract many insect species, and therefore may contribute to the spread of different vector-borne diseases. Also, based on the collection of different species of triatomines with light traps, several authors have suggested that light might attract triatomines to houses, but the role of artificial light in house infestation has never been clearly demonstrated and quantified. Here we performed a spatial analysis of house infestation pattern by T. dimidiata in relation to the distribution of artificial light sources in three different villages from the Yucatan peninsula, Mexico. In all three villages, infested houses were significantly closer to public street light sources than non-infested houses (18.0 +/- 0.6 vs 22.6 +/- 0.4 m), and street lights rather than domestic lights were associated with house infestation. Accordingly, houses closer to a public street lights were 1.64 times more likely to be infested than houses further away (OR, CI95% 1.23-2.18). Behavioral experiments using a dual-choice chamber further confirmed that adult male and females were attracted to white light during their nocturnal activity. Attraction was also dependent on light color and decreased with increasing wavelength. While public lighting is usually associated with increased development, these data clearly show that it also directly contributes to house infestation by non-domiciliated T. dimidiata.  
  Address Laboratorio de Parasitologia, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autonoma de Yucatan, Merida, Yucatan, Mexico  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22558384; PMCID:PMC3338588 Approved no  
  Call Number LoNNe @ kyba @ Serial 1489  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: