|   | 
Details
   web
Records
Author Mavraki, N.; Georgiadis, M.; Koutsikopoulos, C.; Tzanatos, E.
Title Unravelling the nocturnal appearance of bogue Boops boops shoals in the anthropogenically modified shallow littoral Type Journal Article
Year 2016 Publication Journal of Fish Biology Abbreviated Journal J Fish Biol
Volume Issue Pages
Keywords Animals; artificial habitats; coastal zone; fish behaviour; nocturnal migration; predation avoidance; Boops boops; fish
Abstract In the present study the role of the nocturnal migration of bogue Boops boops shoals to anthropogenically modified shallow littoral locations was examined, evaluating four alternative hypotheses: (1) feeding, (2) reproduction, (3) attraction of B. boops to artificial light and (4) concealment in the darkness related to predation avoidance. All hypotheses apart from predation avoidance were rejected, as B. boops tended to concentrate in shaded locations of wider illuminated areas, a finding not only important concerning fish behaviour, but also with significant management implications.
Address (down) Section of Animal Biology, Department of Biology, University of Patras, GR 26504 Rio, Patras, Greece; ninon.mavraki(at)gmail.com
Corporate Author Thesis
Publisher FSBI Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1112 ISBN Medium
Area Expedition Conference
Notes PMID:27094613 Approved no
Call Number IDA @ john @ Serial 1447
Permanent link to this record
 

 
Author Gerhart-Hines, Z.; Lazar, M.A.
Title Circadian Metabolism in the Light of Evolution Type Journal Article
Year 2015 Publication Endocrine Reviews Abbreviated Journal Endocr Rev
Volume 36 Issue 3 Pages 289-304
Keywords Human Health, Animals
Abstract Circadian rhythm, or daily oscillation, of behaviors and biological processes is a fundamental feature of mammalian physiology that has developed over hundreds of thousands of years under the continuous evolutionary pressure of energy conservation and efficiency. Evolution has fine-tuned the body's clock to anticipate and respond to numerous environmental cues in order to maintain homeostatic balance and promote survival. However, we now live in a society in which these classic circadian entrainment stimuli have been dramatically altered from the conditions under which the clock machinery was originally set. A bombardment of artificial lighting, heating and cooling systems that maintain constant ambient temperature, sedentary lifestyle, and availability of inexpensive, high-calorie foods have threatened even the most powerful and ancient circadian programming mechanisms. Such environmental changes have contributed to the recent staggering elevation in lifestyle-influenced pathologies, including cancer, cardiovascular disease, depression, obesity and diabetes. This review scrutinizes the role of the body's internal clocks in the hard-wiring of circadian networks that have evolved to achieve energetic balance and adaptability, and discusses potential therapeutic strategies to reset clock metabolic control to modern time for the benefit of human health.
Address (down) Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, DK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-769X ISBN Medium
Area Expedition Conference
Notes PMID:25927923 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 1165
Permanent link to this record
 

 
Author Gonzalez, M.M.C.
Title Dim Light at Night and Constant Darkness: Two Frequently Used Lighting Conditions That Jeopardize the Health and Well-being of Laboratory Rodents Type Journal Article
Year 2018 Publication Frontiers in Neurology Abbreviated Journal Front Neurol
Volume 9 Issue Pages 609
Keywords Animals; Review
Abstract The influence of light on mammalian physiology and behavior is due to the entrainment of circadian rhythms complemented with a direct modulation of light that would be unlikely an outcome of circadian system. In mammals, physiological and behavioral circadian rhythms are regulated by the suprachiasmatic nucleus (SCN) of the hypothalamus. This central control allows organisms to predict and anticipate environmental change, as well as to coordinate different rhythmic modalities within an individual. In adult mammals, direct retinal projections to the SCN are responsible for resetting and synchronizing physiological and behavioral rhythms to the light-dark (LD) cycle. Apart from its circadian effects, light also has direct effects on certain biological functions in such a way that the participation of the SCN would not be fundamental for this network. The objective of this review is to increase awareness, within the scientific community and commercial providers, of the fact that laboratory rodents can experience a number of adverse health and welfare outcomes attributed to commonly-used lighting conditions in animal facilities during routine husbandry and scientific procedures, widely considered as “environmentally friendly.” There is increasing evidence that exposure to dim light at night, as well as chronic constant darkness, challenges mammalian physiology and behavior resulting in disrupted circadian rhythms, neural death, a depressive-behavioral phenotype, cognitive impairment, and the deregulation of metabolic, physiological, and synaptic plasticity in both the short and long terms. The normal development and good health of laboratory rodents requires cyclical light entrainment, adapted to the solar cycle of day and night, with null light at night and safe illuminating qualities during the day. We therefore recommend increased awareness of the limited information available with regards to lighting conditions, and therefore that lighting protocols must be taken into consideration when designing experiments and duly highlighted in scientific papers. This practice will help to ensure the welfare of laboratory animals and increase the likelihood of producing reliable and reproducible results.
Address (down) Seccion Cronobiologia y Sueno, Instituto Ferrero de Neurologia y Sueno, Buenos Aires, Argentina
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-2295 ISBN Medium
Area Expedition Conference
Notes PMID:30116218; PMCID:PMC6084421 Approved no
Call Number NC @ ehyde3 @ Serial 2084
Permanent link to this record
 

 
Author Pawson, S.M.; Bader, M.K.-F.
Title LED lighting increases the ecological impact of light pollution irrespective of color temperature Type Journal Article
Year 2014 Publication Ecological Applications Abbreviated Journal Ecological Applications
Volume 24 Issue 7 Pages 1561-1568
Keywords biodiversity; high-pressure sodium lamp; light pollution; spectra; street lighting; urbanization; LED; color temperature; ecology
Abstract Recognition of the extent and magnitude of night-time light pollution impacts on natural ecosystems is increasing, with pervasive effects observed in both nocturnal and diurnal species. Municipal and industrial lighting is on the cusp of a step change where energy-efficient lighting technology is driving a shift from “yellow” high-pressure sodium vapor lamps (HPS) to new “white” light-emitting diodes (LEDs). We hypothesized that white LEDs would be more attractive and thus have greater ecological impacts than HPS due to the peak UV-green-blue visual sensitivity of nocturnal invertebrates. Our results support this hypothesis; on average LED light traps captured 48% more insects than were captured with light traps fitted with HPS lamps, and this effect was dependent on air temperature (significant light × air temperature interaction). We found no evidence that manipulating the color temperature of white LEDs would minimize the ecological impacts of the adoption of white LED lights. As such, large-scale adoption of energy-efficient white LED lighting for municipal and industrial use may exacerbate ecological impacts and potentially amplify phytosanitary pest infestations. Our findings highlight the urgent need for collaborative research between ecologists and electrical engineers to ensure that future developments in LED technology minimize their potential ecological effects.
Address (down) Scion, P.O. Box 29-237, Fendalton, Christchurch, New Zealand
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-0761 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 367
Permanent link to this record
 

 
Author Fulbright, J.P.; Xiong, X.
Title Suomi-NPP VIIRS day/night band calibration with stars Type Journal Article
Year 2015 Publication Proc. SPIE 9607, Earth Observing Systems XX, 2015 Abbreviated Journal
Volume Issue Pages 96071S
Keywords Remote Sensing; Suomi NPP; VIIRS DNB; calibration
Abstract Observations of stars can be used to calibrate the radiometric performance of the Day/Night Band (DNB) of the Suomi-NPP instrument VIIRS. Bright stars are normally visible in the Space View window. In this paper, we describe several potential applications of stellar observations with preliminary results for several. These applications include routine trending of the gain of the highand mid-gain stages of the DNB and trending the gain ratio between those stages. Many of the stars observed by the VIIRS DNB have absolute flux curves available, allowing for an absolute calibration. Additionally, stars are visible during scheduled lunar roll observations. The electronic sector rotations applied during the scheduled lunar observations greatly increases the sky area recorded for a brief period, increasing the observing opportunities. Additionally, the DNB recorded data during the spacecraft pitch maneuver. This means the deep sky was viewed through the full Earth View. In this situation, thousands of stars (and the planet Mars) are recorded over a very short time period and over all aggregation zones. A possible application would be to create a gain curve by comparing the instrument response to the known apparent stellar brightness for a large number of stars of similar spectral shape. Finally, the DNB is especially affected the mirror degradation afflicting VIIRS. The degradation has shifted peak of the relative spectral response (RSR) of the DNB the blue and the effective band pass has been slightly reduced. The change in response for hot stars (effective temperatures of over 30,000 K) due to this degradation will differ by about 10 percent from the response change of cool stars (below 3500 K).
Address (down) Science Systems and Applications, Inc., USA
Corporate Author Thesis
Publisher SPIE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1260
Permanent link to this record