|   | 
Details
   web
Records
Author Swaminathan, K.; Klerman, E.B.; Phillips, A.J.K.
Title Are Individual Differences in Sleep and Circadian Timing Amplified by Use of Artificial Light Sources? Type Journal Article
Year 2017 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume Issue Pages 748730417699310
Keywords Human Health
Abstract Within the human population, there is large interindividual variability in the timing of sleep and circadian rhythms. This variability has been attributed to individual differences in sleep physiology, circadian physiology, and/or light exposure. Recent experimental evidence suggests that the latter is necessary to evoke large interindividual differences in sleep and circadian timing. We used a validated model of human sleep and circadian physiology to test the hypothesis that intrinsic differences in sleep and circadian timing are amplified by self-selected use of artificial light sources. We tested the model under 2 conditions motivated by an experimental study (Wright et al., 2013): (1) a “natural” light cycle, and (2) a “realistic” light cycle that included attenuation of light due to living indoors when natural light levels are high and use of electric light when natural light levels are low. Within these conditions, we determined the relationship between intrinsic circadian period (within the range of 23.7-24.6 h) and timing of sleep onset, sleep offset, and circadian rhythms. In addition, we simulated a work week, with fixed wake time for 5 days and free sleep times on weekends. Under both conditions, a longer intrinsic period resulted in later sleep and circadian timing. Compared to the natural condition, the realistic condition evoked more than double the variation in sleep timing across the physiological range of intrinsic circadian periods. Model predictions closely matched data from the experimental study. We found that if the intrinsic circadian period was long (>24.2 h) under the realistic condition, there was significant mismatch in sleep timing between weekdays and weekends, which is known as social jetlag. These findings indicate that individual tendencies to have very delayed schedules can be greatly amplified by self-selected modifications to the natural light/dark cycle. This has important implications for therapeutic treatment of advanced or delayed sleep phase disorders.
Address (down) School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes PMID:28367676 Approved no
Call Number SU @ spitschan @ Serial 1648
Permanent link to this record
 

 
Author Bullock, B.; McGlashan, E.M.; Burns, A.C.; Lu, B.S.; Cain, S.W.
Title Traits related to bipolar disorder are associated with an increased post-illumination pupil response Type Journal Article
Year 2019 Publication Psychiatry Research Abbreviated Journal Psychiatry Res
Volume 278 Issue Pages 35-41
Keywords Human Health
Abstract Mood states in bipolar disorder appear to be closely linked to changes in sleep and circadian function. It has been suggested that hypersensitivity of the circadian system to light may be a trait vulnerability for bipolar disorder. Healthy persons with emotional-behavioural traits associated with bipolar disorder also appear to exhibit problems with circadian rhythms, which may be associated with individual differences in light sensitivity. This study investigated the melanopsin-driven post-illumination pupil response (PIPR) in relation to emotional-behavioural traits associated with bipolar disorder (measured with the General Behavior Inventory) in a non-clinical group (n=61). An increased PIPR was associated with increased bipolar disorder-related traits. Specifically, the hypomania scale of the General Behavior Inventory was associated with an increased post-blue PIPR. Further, both the full hypomania and shortened '7 Up' scales were significantly predicted by PIPR, after age, sex and depressive traits were controlled. These findings suggest that increased sensitivity to light may be a risk factor for mood problems in the general population, and support the idea that hypersensitivity to light is a trait vulnerability for, rather than symptom of, bipolar disorder.
Address (down) School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia. Electronic address: sean.cain@monash.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-1781 ISBN Medium
Area Expedition Conference
Notes PMID:31136914 Approved no
Call Number GFZ @ kyba @ Serial 2510
Permanent link to this record
 

 
Author Huang, Z.; Liu, Q.; Westland, S.; Pointer, M.; Luo, M.R.; Xiao, K.
Title Light dominates colour preference when correlated colour temperature differs Type Journal Article
Year 2018 Publication Lighting Research & Technology Abbreviated Journal Lighting Research & Technology
Volume 50 Issue 7 Pages 995-1012
Keywords Vision; Lighting
Abstract Colour preference for lighting is generally influenced by three kinds of contextual factors, the light, the object and the observer. In this study, a series of psychophysical experiments were conducted to investigate and compare the effect of certain factors on colour preference, including spectral power distribution of light, lighting application, observers’ personal colour preference, regional cultural difference and gender difference. LED lights with different correlated colour temperatures were used to illuminate a wide selection of objects. Participant response was quantified by a 7-point rating method or a 5-level ranking method. It was found that the preferred illumination for different objects exhibited a similar trend and that the influence of light was significantly stronger than that of other factors. Therefore, we conclude that the light itself (rather than, e.g. the objects that are viewed) is the most crucial factor for predicting which light, among several candidates with different correlated colour temperatures, an observer will prefer. In addition, some of the gamut-based colour quality metrics correlated well with the participants’ response, which corroborates the view that colour preference is strongly influenced by colour saturation. The familiarity of the object affects the ratings for each experiment while the colour of the objects also influences colour preference.
Address (down) School of Printing and Packaging, Wuhan University, Luoyu Road 129, Wuhan, China; liuqiang(at)whu.edu.cn
Corporate Author Thesis
Publisher SAGE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-1535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2256
Permanent link to this record
 

 
Author Hall, A.L.; Davies, H.W.; Koehoorn, M.
Title Personal light-at-night exposures and components of variability in two common shift work industries: uses and implications for future research Type Journal Article
Year 2018 Publication Scandinavian Journal of Work, Environment & Health Abbreviated Journal Scand J Work Environ Health
Volume 44 Issue 1 Pages 80-87
Keywords Human Health
Abstract Objectives Shift workers' increased risk of various adverse health outcomes has been linked to light-at-night (LAN) exposure, but few studies have measured LAN exposure in workplaces. To inform future research methods, this study aimed to (i) measure shift workers' exposures to LAN across industries, occupations, and work environments and (ii) assess components of variance across different exposure groupings and metrics. Methods Between October 2015 and March 2016, 152 personal full-shift measurements were collected from 102 night shift workers in emergency health services (paramedics, dispatchers) and healthcare industries (nurses, care aides, security guards, unit clerks, and laboratory, pharmacy, and respiratory therapy staff) in the province of British Columbia, Canada. Descriptive and variance component analyses were conducted for the 23:00-05:00 period to characterize exposures using multiple metrics of potential biological relevance (median lux, 90 thpercentile lux, sum of minutes >/=30 lux, and sum of minutes >/=100 lux). Results Average exposure levels were highest in the healthcare industry. By occupation, laboratory workers and care aides displayed the highest and emergency dispatch officers displayed the lowest levels for all LAN exposure metrics. Between-group variance was large relative to within-group variance for all exposure groupings and metrics, and increased as grouping specificity increased (moving from industry to occupation). Conclusions Results from this study suggest that high-level grouping schemes may provide a simple yet effective way of characterizing individual LAN exposures in epidemiological studies of shift work. Ongoing measurement of LAN exposures and assessment of exposure variability is needed in future studies of shift workers as a means to increase sampling efficiency, reduce measurement error, and maximize researchers' ability to detect relationships where they exist.
Address (down) School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, V6T1Z3, Canada. amyhall@mail.ubc.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0355-3140 ISBN Medium
Area Expedition Conference
Notes PMID:28951937 Approved no
Call Number LoNNe @ kyba @ Serial 1754
Permanent link to this record
 

 
Author Stone, J.E.; Phillips, A.J.K.; Ftouni, S.; Magee, M.; Howard, M.; Lockley, S.W.; Sletten, T.L.; Anderson, C.; Rajaratnam, S.M.W.; Postnova, S.
Title Generalizability of A Neural Network Model for Circadian Phase Prediction in Real-World Conditions Type Journal Article
Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 9 Issue 1 Pages 11001
Keywords Human Health; Instrumentation
Abstract A neural network model was previously developed to predict melatonin rhythms accurately from blue light and skin temperature recordings in individuals on a fixed sleep schedule. This study aimed to test the generalizability of the model to other sleep schedules, including rotating shift work. Ambulatory wrist blue light irradiance and skin temperature data were collected in 16 healthy individuals on fixed and habitual sleep schedules, and 28 rotating shift workers. Artificial neural network models were trained to predict the circadian rhythm of (i) salivary melatonin on a fixed sleep schedule; (ii) urinary aMT6s on both fixed and habitual sleep schedules, including shift workers on a diurnal schedule; and (iii) urinary aMT6s in rotating shift workers on a night shift schedule. To determine predicted circadian phase, center of gravity of the fitted bimodal skewed baseline cosine curve was used for melatonin, and acrophase of the cosine curve for aMT6s. On a fixed sleep schedule, the model predicted melatonin phase to within +/- 1 hour in 67% and +/- 1.5 hours in 100% of participants, with mean absolute error of 41 +/- 32 minutes. On diurnal schedules, including shift workers, the model predicted aMT6s acrophase to within +/- 1 hour in 66% and +/- 2 hours in 87% of participants, with mean absolute error of 63 +/- 67 minutes. On night shift schedules, the model predicted aMT6s acrophase to within +/- 1 hour in 42% and +/- 2 hours in 53% of participants, with mean absolute error of 143 +/- 155 minutes. Prediction accuracy was similar when using either 1 (wrist) or 11 skin temperature sensor inputs. These findings demonstrate that the model can predict circadian timing to within +/- 2 hours for the vast majority of individuals on diurnal schedules, using blue light and a single temperature sensor. However, this approach did not generalize to night shift conditions.
Address (down) School of Physics, University of Sydney, Sydney, New South Wales, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:31358781; PMCID:PMC6662750 Approved no
Call Number GFZ @ kyba @ Serial 2667
Permanent link to this record