|   | 
Details
   web
Records
Author Letu, H.; Hara, M.; Tana, G.; Bao, Y.; Nishio, F.
Title Generating the Nighttime Light of the Human Settlements by Identifying Periodic Components from DMSP/OLS Satellite Imagery Type Journal Article
Year 2015 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol
Volume 49 Issue 17 Pages 10503–10509
Keywords Remote Sensing; DMSP-OLS; DMSP; OLS; nighttime lights; stable lights; greenhouse gas; economic development
Abstract Nighttime lights of the human settlements (hereafter, “stable lights”) are seen as a valuable proxy of social economic activity and greenhouse gas emissions at the subnational level. In this study, we propose an improved method to generate the stable lights from Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) daily nighttime light data for 1999. The study area includes Japan, China, India, and other 10 countries in East Asia. A noise reduction filter (NRF) was employed to generate a stable light from DMSP/OLS time-series daily nighttime light data. It was found that noise from amplitude of the 1-year periodic component is included in the stable light. To remove the amplitude of the 1-year periodic component noise included in the stable light, the NRF method was improved to extract the periodic component. Then, new stable light was generated by removing the amplitude of the 1-year periodic component using the improved NRF method. The resulting stable light was evaluated by comparing it with the conventional nighttime stable light provided by the National Oceanic and Atmosphere Administration/National Geophysical Data Center (NOAA/NGDC). It is indicated that DNs of the NOAA stable light image are lower than those of the new stable light image. This might be attributable to the influence of attenuation effects from thin warm water clouds. However, due to overglow effect of the thin cloud, light area in new stable light is larger than NOAA stable light. Furthermore, the cumulative digital numbers (CDNs) and number of light area pixels (NLAP) of the generated stable light and NOAA/NGDC stable light were applied to estimate socioeconomic variables of population, electric power consumption, gross domestic product, and CO2 emissions from fossil fuel consumption. It is shown that the correlations of the population and CO2FF with new stable light data are higher than those in NOAA stable light data; correlations of the EPC and GDP with NOAA stable light data are higher those in the new stable light data.
Address (down) parallelRemote Sensing and GIS Key Laboratory, Inner Mongolia Normal University, 81 Zhaowuda street, Hohhot 010022, China
Corporate Author Thesis
Publisher ACS Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936X ISBN Medium
Area Expedition Conference
Notes PMID:26280570 Approved no
Call Number IDA @ john @ Serial 1246
Permanent link to this record
 

 
Author Young, L. C., VanderWerf, E. A., McKown M., Roberts, P., Schlueter, J., Vorsino, A., & Sischo, D.
Title Evidence of Newell’s Shearwaters and Hawaiian Petrels on Oahu, Hawaii Type Journal Article
Year 2019 Publication The Condor: Ornithological Applications Abbreviated Journal Condor
Volume 121 Issue 1 Pages 1-7
Keywords Animals; Remote Sensing
Abstract Hawaii’s only 2 endemic seabirds, Newell’s Shearwater (Puffinus auricularis newelli) and Hawaiian Petrel (Pterodroma sandwichensis), are listed under the United States Endangered Species Act. Threats to both species include light attraction and fallout, collisions with power lines and other structures, predation by invasive animals, and habitat degradation. Both species were assumed to be extirpated from the island of Oahu despite limited survey effort. We used survey data from Kauai (both species) and Maui (Hawaiian Petrel only) to model suitable habitat and light conditions. We then projected this model onto Oahu to identify potential survey sites. From April to September of 2016–2017, we deployed automated acoustic recording units at 13 potentially suitable sites across Oahu. We detected Newell’s Shearwaters at 2 sites; one on the leeward slopes of Mount Kaala in the Waianae Mountains and another at Poamoho in the Koolau Mountains. We detected Hawaiian Petrels at one location on the windward slope of Mount Kaala. All 3 sites were in nearly intact native forest with steep slopes. The frequency of detections at these sites suggests that both species are regularly prospecting on Oahu and potentially could be breeding there. If they are breeding, these individuals could represent missing links in the population connectivity of both species among islands. Protecting any remnant breeding populations would be of high conservation value given their recent population declines.
Address (down) Pacific Rim Conservation, Honolulu, Hawaii, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2308
Permanent link to this record
 

 
Author Ouyang, J.Q.; de Jong, M.; van Grunsven, R.H.; Matson, K.D.; Haussmann, M.F.; Meerlo, P.; Visser, M.; Spoelstra, K.
Title What type of rigorous experiments are needed to investigate the impact of artificial light at night on individuals and populations? Type Journal Article
Year 2017 Publication Global Change Biology Abbreviated Journal Glob Chang Biol
Volume 23 Issue 12 Pages e9-e10
Keywords Animals
Abstract In our recent paper on how artificial light at night (ALAN) affects within-individual changes in physiology, we used a unique experimental setup of colored LED lights to show effects on nighttime activity levels and physiology in free-living great tits, Parus major (Ouyang et al., 2017). Raap et al's response, entitled: “Rigorous field experiments are essential to understand the genuine severity of light pollution and to identify possible solutions” lists issues with our analyses (Raap et al., 2017). Rather than go into a detailed response, we use this forum to address the major critiques by answering the bigger question of what types of rigorous field experiments are needed to evaluate ALAN's impact. This article is protected by copyright. All rights reserved.
Address (down) P.O. box 50, 6700 AB, Wageningen, Gelderland Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium
Area Expedition Conference
Notes PMID:28886232 Approved no
Call Number LoNNe @ kyba @ Serial 1721
Permanent link to this record
 

 
Author Rabaza, O.; Aznar-Dols, F.; Mercado-Vargas, M.; Espin-Estrella, A.
Title A new method of measuring and monitoring light pollution in the night sky Type Journal Article
Year 2014 Publication Lighting Research and Technology Abbreviated Journal Lighting Research and Technology
Volume 46 Issue 1 Pages 5-19
Keywords Instrumentation; all-sky; measurement; modeling; monitoring
Abstract This paper describes a method of measuring and monitoring light pollution in the night sky. This method is capable of instantly quantifying the levels of artificial radiance and monochromatic luminance of the sky glow by means of a system that includes an all-sky camera as well as several interference filters. The calibration is done with an integrating sphere where the measurement pattern used is obtained from the light reflected from the inner wall of the sphere which comes from radiation emitted by a calibration lamp with a known luminous flux. The inner wall of this sphere is a Lambertian surface, which ensures that the light reflected or falling on it is uniformly dispersed in all directions (i.e. the surface luminance is isotropic).
Address (down) Ovidio Rabaza Castillo, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingenieria Civil, Campus de Fuentenueva, Universidad de Granada, 18071, Granada, Spain E-mail: ovidio(at)ugr.es
Corporate Author Thesis
Publisher SAGE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-1535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1347
Permanent link to this record
 

 
Author Elgert, C.; Hopkins, J.; Kaitala, A.; Candolin, U.
Title Reproduction under light pollution: maladaptive response to spatial variation in artificial light in a glow-worm Type Journal Article
Year 2020 Publication Proceedings of the Royal Society B: Biological Sciences Abbreviated Journal Proc. R. Soc. B.
Volume 287 Issue 1931 Pages 20200806
Keywords Animals; glow-worms; Lampyris noctiluca; insects; maladaptive response; reproduction
Abstract The amount of artificial light at night is growing worldwide, impacting the behaviour of nocturnal organisms. Yet, we know little about the consequences of these behavioural responses for individual fitness and population viability. We investigated if females of the common glow-worm Lampyris noctiluca—which glow in the night to attract males—mitigate negative effects of artificial light on mate attraction by adjusting the timing and location of glowing to spatial variation in light conditions. We found females do not move away from light when exposed to a gradient of artificial light, but delay or even refrain from glowing. Further, we demonstrate that this response is maladaptive, as our field study showed that staying still when exposed to artificial light from a simulated streetlight decreases mate attraction success, while moving only a short distance from the light source can markedly improve mate attraction. These results indicate that glow-worms are unable to respond to spatial variation in artificial light, which may be a factor in their global decline. Consequently, our results support the hypothesis that animals often lack adaptive behavioural responses to anthropogenic environmental changes and underlines the importance of considering behavioural responses when investigating the effects of human activities on wildlife.
Address (down) Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, 00014 Helsinki, Finland; christina.elgert(at)helsinki.fi
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 3049
Permanent link to this record