toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bennett, S.; Alpert, M.; Kubulins, V.; Hansler, R.L. url  doi
openurl 
  Title Use of modified spectacles and light bulbs to block blue light at night may prevent postpartum depression Type Journal Article
  Year 2009 Publication Medical Hypotheses Abbreviated Journal Med Hypotheses  
  Volume 73 Issue 2 Pages 251-253  
  Keywords Depression, Postpartum/*prevention & control; *Eyeglasses; Female; Humans; *Lighting; blue light; light therapy; blue blocker  
  Abstract In 2001 it was discovered that exposing the eyes to light in the blue end of the visible spectrum suppresses the production of the sleep hormone, melatonin. New mothers need to get up during the night to care for their babies. This is the time when melatonin is normally flowing. Exposing their eyes to light can cut off the flow. It may also reset their circadian (internal) clock. On subsequent nights the melatonin may not begin flowing at the normal time making it difficult to fall asleep. Over time, disruption of the circadian rhythm plus sleep deprivation may result in depression. Women suffering postpartum depression were enrolled in a small clinical trial. Some were provided with glasses and light bulbs that block blue light. Others were equipped with glasses and light bulbs that looked colored but did not block the rays causing melatonin suppression. Those with the “real glasses” recovered somewhat more quickly than those with the placebo glasses and light bulbs. The hypothesis that should be tested in large scale clinical trials is that the risk of postpartum depression can be reduced when a new mother avoids exposing her eyes to blue light when she gets up at night to care for her baby. In the meantime, all new mothers may benefit from using glasses and light bulbs that block blue light when getting up at night to care for their babies.  
  Address (down) Postpartum Support, International P.O. Box 60931, Santa Barbara, CA 93160, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0306-9877 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19329259 Approved no  
  Call Number IDA @ john @ Serial 296  
Permanent link to this record
 

 
Author Davies, T.W.; McKee, D.; Fishwick, J.; Tidau, S.; Smyth, T. url  doi
openurl 
  Title Biologically important artificial light at night on the seafloor Type Journal Article
  Year 2020 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 10 Issue 1 Pages 12545  
  Keywords Ecology; Skyglow; Remote Sensing  
  Abstract Accelerating coastal development is increasing the exposure of marine ecosystems to nighttime light pollution, but is anthropogenic light reaching the seafloor in sufficient quantities to have ecological impacts? Using a combination of mapping, and radiative transfer modelling utilising in situ measurements of optical seawater properties, we quantified artificial light exposure at the sea surface, beneath the sea surface, and at the sea floor of an urbanised temperate estuary bordered by an LED lit city. Up to 76% of the three-dimensional seafloor area was exposed to biologically important light pollution. Exposure to green wavelengths was highest, while exposure to red wavelengths was nominal. We conclude that light pollution from coastal cities is likely having deleterious impacts on seafloor ecosystems which provide vital ecosystem services. A comprehensive understanding of these impacts is urgently needed.  
  Address (down) Plymouth Marine Laboratory, Prospect Place, Devon, Plymouth, PL1 3DH, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32719492; PMCID:PMC7385152 Approved no  
  Call Number GFZ @ kyba @ Serial 3071  
Permanent link to this record
 

 
Author Davies, T.W.; Smyth, T. url  doi
openurl 
  Title Why artificial light at night should be a focus for global change research in the 21st century Type Journal Article
  Year 2018 Publication Global Change Biology Abbreviated Journal Glob Chang Biol  
  Volume 24 Issue 3 Pages 872-882  
  Keywords Commentary; Animals; Plants  
  Abstract The environmental impacts of artificial light at night have been a rapidly growing field of global change science in recent years. Yet, light pollution has not achieved parity with other global change phenomena in the level of concern and interest it receives from the scientific community, government and nongovernmental organizations. This is despite the globally widespread, expanding and changing nature of night-time lighting and the immediacy, severity and phylogenetic breath of its impacts. In this opinion piece, we evidence 10 reasons why artificial light at night should be a focus for global change research in the 21st century. Our reasons extend beyond those concerned principally with the environment, to also include impacts on human health, culture and biodiversity conservation more generally. We conclude that the growing use of night-time lighting will continue to raise numerous ecological, human health and cultural issues, but that opportunities exist to mitigate its impacts by combining novel technologies with sound scientific evidence. The potential gains from appropriate management extend far beyond those for the environment, indeed it may play a key role in transitioning towards a more sustainable society.  
  Address (down) Plymouth Marine Laboratory, Plymouth, Devon, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29124824 Approved no  
  Call Number GFZ @ kyba @ Serial 2054  
Permanent link to this record
 

 
Author Underwood, C.N.; Davies, T.W.; Queiros, A.M. url  doi
openurl 
  Title Artificial light at night alters trophic interactions of intertidal invertebrates Type Journal Article
  Year 2017 Publication The Journal of Animal Ecology Abbreviated Journal J Anim Ecol  
  Volume 86 Issue 4 Pages 781-789  
  Keywords Animals  
  Abstract Despite being globally widespread in coastal regions, the impacts of light pollution on intertidal ecosystems has received little attention. Intertidal species exhibit many night-time-dependent ecological strategies, including feeding, reproduction, orientation and predator avoidance, which are likely negatively affected by shifting light regimes, as has been observed in terrestrial and aquatic taxa. Coastal lighting may shape intertidal communities through its influence on the nocturnal foraging activity of dogwhelks (Nucella lapillus), a widespread predatory mollusc that structures biodiversity in temperate rocky shores. In the laboratory, we investigated whether the basal and foraging activity of this predator was affected by exposure to night-time lighting both in the presence and absence of olfactory predator cues (Carcinus maenas, common shore crab). Assessments of dogwhelks' behavioural responses to night-time white LED lighting were performed on individuals that had been acclimated to night-time white LED lighting conditions for 16 days and individuals that had not previously been exposed to artificial light at night. Dogwhelks acclimated to night-time lighting exhibited natural refuge-seeking behaviour less often compared to control animals, but were more likely to respond to and handle prey irrespective of whether olfactory predator cues were present. These responses suggest night-time lighting likely increased the energetic demand of dogwhelks through stress, encouraging foraging whenever food was available, regardless of potential danger. Contrastingly, whelks not acclimated under night-time lighting were more likely to respond to the presence of prey under artificial light at night when olfactory predator cues were present, indicating an opportunistic shift towards the use of visual instead of olfactory cues in risk evaluation. These results demonstrate that artificial night-time lighting influences the behaviour of intertidal fauna such that the balance of interspecific interactions involved in community structuring may be affected.  
  Address (down) Plymouth Marine Laboratory, Plymouth, Devon, PL1 3DH, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8790 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28452048 Approved no  
  Call Number LoNNe @ kyba @ Serial 1661  
Permanent link to this record
 

 
Author Raven, J.A.; Cockell, C.S. url  doi
openurl 
  Title Influence on photosynthesis of starlight, moonlight, planetlight, and light pollution (reflections on photosynthetically active radiation in the universe) Type Journal Article
  Year 2006 Publication Astrobiology Abbreviated Journal Astrobiology  
  Volume 6 Issue 4 Pages 668-675  
  Keywords Plants  
  Abstract Photosynthesis on Earth can occur in a diversity of organisms in the photosynthetically active radiation (PAR) range of 10 nmol of photons m(-2) s(-1) to 8 mmol of photons m(-2) s(-1). Similar considerations would probably apply to photosynthetic organisms on Earth-like planets (ELPs) in the continuously habitable zone of other stars. On Earth, starlight PAR is inadequate for photosynthetically supported growth. An increase in starlight even to reach the minimum theoretical levels to allow for photosynthesis would require a universe that was approximately ten million times older, or with a ten million times greater density of stars, than is the case for the present universe. Photosynthesis on an ELP using PAR reflected from a natural satellite with the same size as our Moon, but at the Roche limit, could support a low rate of photosynthesis at full Moon. Photosynthesis on an ELP-like satellite of a Jupiter-sized planet using light reflected from the planet could be almost 1% of the rate in full sunlight on Earth when the planet was full. These potential contributions to photosynthesis require that the contribution is compared with the rate of photosynthesis driven by direct radiation from the star. Light pollution on Earth only energizes photosynthesis by organisms that are very close to the light source. However, effects of light pollution on photosynthesis can be more widespread if the photosynthetic canopy is retained for more of the year, caused by effects on photoperiodism, with implications for the influence of civilizations on photosynthesis.  
  Address (down) Plant Research Unit, University of Dundee at SCRI, Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-8070 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16916290 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 1198  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: