|   | 
Details
   web
Records
Author Donners, M.; van Grunsven, R.H.A.; Groenendijk, D.; van Langevelde, F.; Bikker, J.W.; Longcore, T.; Veenendaal, E.
Title Colors of attraction: Modeling insect flight to light behavior Type Journal Article
Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol
Volume 329 Issue 8-9 Pages 434-440
Keywords Animals; ecology; Lighting
Abstract Light sources attract nocturnal flying insects, but some lamps attract more insects than others. The relation between the properties of a light source and the number of attracted insects is, however, poorly understood. We developed a model to quantify the attractiveness of light sources based on the spectral output. This model is fitted using data from field experiments that compare a large number of different light sources. We validated this model using two additional datasets, one for all insects and one excluding the numerous Diptera. Our model facilitates the development and application of light sources that attract fewer insects without the need for extensive field tests and it can be used to correct for spectral composition when formulating hypotheses on the ecological impact of artificial light. In addition, we present a tool allowing the conversion of the spectral output of light sources to their relative insect attraction based on this model.
Address (down) Plant Ecology and Nature Conservation, Wageningen University, Wageningen, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2471-5638 ISBN Medium
Area Expedition Conference
Notes PMID:29944198 Approved no
Call Number GFZ @ kyba @ Serial 1944
Permanent link to this record
 

 
Author Dominoni, D.M.; Kjellberg Jensen, J.; de Jong, M.; Visser, M.E.; Spoelstra, K.
Title Artificial light at night, in interaction with spring temperature, modulates timing of reproduction in a passerine bird Type Journal Article
Year 2019 Publication Ecological Applications : a Publication of the Ecological Society of America Abbreviated Journal Ecol Appl
Volume Issue Pages in press
Keywords Animals; Parus major; Alan; light pollution; phenology; timing of reproduction; urbanization
Abstract The ecological impact of artificial light at night (ALAN) on phenological events such as reproductive timing is increasingly recognized. In birds, previous experiments under controlled conditions showed that ALAN strongly advances gonadal growth, but effects on egg-laying date are less clear. In particular, effects of ALAN on timing of egg-laying are found to be year-dependent, suggesting an interaction with climatic conditions such as spring temperature, which is known have strong effects on the phenology of avian breeding. Thus, we hypothesized that ALAN and temperature interact to regulate timing of reproduction in wild birds. Field studies have suggested that sources of ALAN rich in short wavelengths can lead to stronger advances in egg-laying date. We therefore tested this hypothesis in the great tit (Parus major), using a replicated experimental setup where eight previously unlit forest transects were illuminated with either white, green, or red LED light, or left dark as controls. We measured timing of egg-laying for 619 breeding events spread over six consecutive years and obtained temperature data for all sites and years. We detected overall significantly earlier egg-laying dates in the white and green light versus the dark treatment, and similar trends for red light. However, there was a strong inter-annual variability in mean egg-laying dates in all treatments, which was explained by spring temperature. We did not detect any fitness consequence of the changed timing of egg-laying due to ALAN, which suggests that advancing reproduction in response to ALAN might be adaptive.
Address (down) Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-0761 ISBN Medium
Area Expedition Conference
Notes PMID:31863538 Approved no
Call Number GFZ @ kyba @ Serial 2805
Permanent link to this record
 

 
Author van Langevelde, F.; van Grunsven, R.H.A.; Veenendaal, E.M.; Fijen, T.P.M.
Title Artificial night lighting inhibits feeding in moths Type Journal Article
Year 2017 Publication Biology Letters Abbreviated Journal Biol Lett
Volume 13 Issue 3 Pages
Keywords Animals
Abstract One major, yet poorly studied, change in the environment is nocturnal light pollution, which strongly alters habitats of nocturnally active species. Artificial night lighting is often considered as driving force behind rapid moth population declines in severely illuminated countries. To understand these declines, the question remains whether artificial light causes only increased mortality or also sublethal effects. We show that moths subjected to artificial night lighting spend less time feeding than moths in darkness, with the shortest time under light conditions rich in short wavelength radiation. These findings provide evidence for sublethal effects contributing to moth population declines. Because effects are strong under various types of light compared with dark conditions, the potential of spectral alterations as a conservation tool may be overestimated. Therefore, restoration and maintenance of darkness in illuminated areas is essential for reversing declines of moth populations.
Address (down) Plant Ecology and Nature Conservation Group, Wageningen University, Droevendaalsesteeg 3a, PO Box 47, 6700 AA Wageningen, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1744-9561 ISBN Medium
Area Expedition Conference
Notes PMID:28250209; PMCID:PMC5377031 Approved no
Call Number GFZ @ kyba @ Serial 1859
Permanent link to this record
 

 
Author Lima, R.C.; da Cunhac, J.P.; Peixinho, N.
Title Light Pollution: Assessment of Sky Glow on two Dark Sky Regions of Portugal Type Journal Article
Year 2016 Publication Journal of Toxicology and Environmental Health, Part A: Current Issues Abbreviated Journal J Toxicol Environm Health
Volume 79 Issue 7 Pages 307-319
Keywords Skyglow; Portugal; Peneda-Gerês National Park; Alqueva
Abstract Artificial light at night (ALAN), producing light pollution (LP), is not a matter restricted to astronomy anymore. Light is part of modern societies and, as a consequence, the natural cycle day–night (bright–dark) has been interrupted in a large segment of the global population. There is increasing evidence that exposure to certain types of light at night and beyond threshold levels may produce hazardous effects to humans and the environment. The concept of “dark skies reserves” is a step forward in order to preserve the night sky and a means of enhancing public awareness of the problem of spread of light pollution worldwide. The aim of this study was to assess the skyglow at two sites in Portugal, the Peneda-Gerês National Park (PNPG) and the region now known as Dark Sky Alqueva Reserve. The latter site was classified as a “Starlight Tourism Destination“ by the Starlight Foundation (the first in the world to achieve this classification) following a series of night sky measurements in situ described herein. The measurements at PNPG also contributed to the new set of regulations concerning light pollution at this national park. This study presents the first in situ systematic measurements of night sky brightness, showing that at the two sites the skies are mostly in levels 3 to 4 of the Bortle 9-level scale (with level 1 being the best achievable). The results indicate that the sources of light pollution and skyglow can be attributed predominantly to contamination from nearby urban regions.
Address (down) Physics, School of Allied Health Technologies of the Polytechnic Institute of Porto, Portugal;
Corporate Author Thesis
Publisher Taylor & Francis Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1408
Permanent link to this record
 

 
Author Meng, Y.; He, Z.; Yin, J.; Zhang, Y.; Zhang, T.
Title Quantitative calculation of human melatonin suppression induced by inappropriate light at night Type Journal Article
Year 2011 Publication Medical & Biological Engineering & Computing Abbreviated Journal Med Biol Eng Comput
Volume 49 Issue 9 Pages 1083-1088
Keywords Algorithms; Circadian Rhythm/physiology/*radiation effects; Humans; *Lighting; Melatonin/*secretion; *Models, Biological; Retinal Cone Photoreceptor Cells/physiology/radiation effects; Retinal Ganglion Cells/physiology/radiation effects; Retinal Rod Photoreceptor Cells/physiology/radiation effects
Abstract Melatonin (C(1)(3)H(1)(6)N(2)O(2)) has a wide range of functions in the body. When is inappropriately exposed to light at night, human circadian rhythm will be interfered and then melatonin secretion will become abnormal. For nearly three decades great progresses have been achieved in analytic action spectra and melatonin suppression by various light conditions. However, so far few articles focused on the quantitative calculation of melatonin suppression induced by light. In this article, an algorithm is established, in which all the contributions of rods, cones, and intrinsically photosensitive retinal ganglion cells are considered. Calculation results accords with the experimental data in references very well, which indicate the validity of this algorithm. This algorithm can also interpret the rule of melatonin suppression varying with light correlated color temperature very well.
Address (down) Photonics Research Center, School of Physics, Nankai University, Tianjin 300071, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0140-0118 ISBN Medium
Area Expedition Conference
Notes PMID:21717231 Approved no
Call Number IDA @ john @ Serial 236
Permanent link to this record