toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wood, J.M. url  doi
openurl 
  Title Nighttime driving: visual, lighting and visibility challenges Type Journal Article
  Year 2019 Publication Ophthalmic & Physiological Optics : the Journal of the British College of Ophthalmic Opticians (Optometrists) Abbreviated Journal Ophthalmic Physiol Opt  
  Volume Issue Pages in press  
  Keywords Review; Public Safety; headlights; nighttime driving; older drivers; pedestrians and cyclists; streetlights; visual performance  
  Abstract PURPOSE: Nighttime driving is dangerous and is one of the most challenging driving situations for most drivers. Fatality rates are higher at night than in the day when adjusted for distances travelled, particularly for crashes involving pedestrians and cyclists. Although there are multiple contributory factors, the low light levels at night are believed to be the major cause of collisions with pedestrians and cyclists at night, most likely due to their reduced visibility. Understanding the visibility problems involved in nighttime driving is thus critical, given the increased risk to road safety. RECENT FINDINGS: This review discusses research that highlights key differences in the nighttime road environment compared to the day and how this affects visual function and driving performance, together with an overview of studies investigating how driver age and visual status affect nighttime driving performance. Research that has focused on the visibility of vulnerable road users at nighttime (pedestrians and cyclists) is also included. SUMMARY: Collectively, the research evidence suggests that visual function is reduced under the mesopic lighting conditions of night driving and that these effects are exacerbated by increasing age and visual impairment. Light and glare from road lighting and headlights have significant impacts on vision and night driving and these effects are likely to change with evolving technologies, such as LED streetlighting and headlights. Research also highlights the importance of the visibility of vulnerable road users at night and the role of retroreflective clothing in the 'biomotion' configuration for improving their conspicuity and hence safety.  
  Address (down) School of Optometry and Vision Science and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0275-5408 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31875993 Approved no  
  Call Number GFZ @ kyba @ Serial 2803  
Permanent link to this record
 

 
Author Erren, T.C.; Pape, H.G.; Reiter, R.J.; Piekarski, C. url  doi
openurl 
  Title Chronodisruption and cancer Type Journal Article
  Year 2008 Publication Die Naturwissenschaften Abbreviated Journal Naturwissenschaften  
  Volume 95 Issue 5 Pages 367-382  
  Keywords Human Health; Animals; Chronobiology Phenomena/*physiology; *Circadian Rhythm; Humans; Incidence; Light; Mammals; Neoplasms/*epidemiology; Work Schedule Tolerance  
  Abstract Research into health effects of chronodisruption (CD), a relevant disturbance of the circadian organization of physiology, endocrinology, metabolism and behaviour, is evolving at a rapid pace. With regard to malignancies, our synthesis of key experiments indicates that CD can play a causal role for cancer growth and tumor progression in animals. Moreover, our meta-analyses of 30 epidemiological studies evince that flight personnel and shift workers exposed to chronodisruption may have increased breast and prostate cancer risks: summary relative risks (RRs) for investigations of flight personnel and of shift workers suggested a 70 and 40% increase in the risk of breast cancer, respectively, and excess relative risks of prostate cancer in nine studies in flight personnel (40%) and in two studies in male shift workers. There was a remarkable indication of homogeneity of results from the individual studies that contribute to the average statistics. However, in view of doubts about whether the differing assessments of CD can really be regarded as valid reflections of the same causative phenomenon and the lack of control of covariates in the majority of studies, it is premature to conclude that the risk observations reflect a real, rather than spurious, association with CD. The challenge for future epidemiological investigations of the biologically plausible links between chronodisruption and human cancers is to conduct studies which appreciate details of transmeridian travelling, of shift work and of covariates for the development of the diseases.  
  Address (down) School of Medicine and Dentistry, University of Cologne, Cologne, Germany. tim.erren@uni-koeln.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-1042 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:18196215 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 744  
Permanent link to this record
 

 
Author Schoeman, M.C. url  doi
openurl 
  Title Light pollution at stadiums favors urban exploiter bats: Selected urban exploiter bats hunt insects at stadiums Type Journal Article
  Year 2015 Publication Animal Conservation Abbreviated Journal Anim. Conserv.  
  Volume 19 Issue 2 Pages 120–130  
  Keywords Animals; artificial light; light pollution; Molossidae; predator–prey interactions; urban avoiders; urban exploiters; bats; bats; mammals; Chaerephon pumilus; Tadarida aegyptiaca; Otomops martiensseni; Mops condylurus  
  Abstract Artificial night lighting by humans may destabilize ecosystems by altering light-dependent biological processes of organisms and changing the availability of light and darkness as resources of food, information and refuge. I tested the hypothesis that urban exploiters should be more likely to utilize bright, unpredictable light pollution sources such as sport stadiums and building sites than urban avoiders. I quantified insectivorous bat activity and feeding attempts at seven sport stadiums under light and dark treatments using acoustic monitoring of echolocation calls. Species richness estimators indicated that stadium inventories were complete. Activity and feeding attempts were significantly higher at lit stadiums than dark stadiums, irrespective of season or surrounding human land use. Bats exhibited species-specific differences in utilization of stadiums. As predicted, four urban exploiters – Chaerephon pumilus, Tadarida aegyptiaca, Otomops martiensseni and Scotophilus dinganii – dominated activity and feeding attempts at lit stadiums, yet one urban exploiter – Mops condylurus – was associated with dark stadiums. Activity levels at both dark and light stadiums were negatively correlated with peak echolocation frequency. Landscape-scale and finer scale abiotic variables were poor predictors of bat activity and feeding attempts. My results suggest that in addition to abiotic processes associated with urbanization, light pollution at sport stadiums may homogenize urban bat diversity by favoring selected urban exploiters.  
  Address (down) School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa; schoemanc(at)ukzn.ac.za  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-9430 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1223  
Permanent link to this record
 

 
Author Stewart, A.J.A.; Perl, C.D.; Niven, J.E. url  doi
openurl 
  Title Artificial lighting impairs mate attraction in a nocturnal capital breeder Type Journal Article
  Year 2020 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol  
  Volume 223 Issue Pt 19 Pages  
  Keywords Animals; Artificial lighting at night (ALAN); Mate attraction; Mate choice; Sexual selection; Transect; Visual ecology; glow worms  
  Abstract Artificial lighting at night (ALAN) is increasingly recognised as having negative effects on many organisms, though the exact mechanisms remain unclear. Glow worms are likely susceptible to ALAN because females use bioluminescence to signal to attract males. We quantified the impact of ALAN by comparing the efficacy of traps that mimicked females to attract males in the presence or absence of a white artificial light source (ALS). Illuminated traps attracted fewer males than did traps in the dark. Illuminated traps closer to the ALS attracted fewer males than those further away, whereas traps in the dark attracted similar numbers of males up to 40 m from the ALS. Thus, ALAN impedes females' ability to attract males, the effect increasing with light intensity. Consequently, ALAN potentially affects glow worms' fecundity and long-term population survival. More broadly, this study emphasises the potentially severe deleterious effects of ALAN upon nocturnal insect populations.  
  Address (down) School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; j.e.niven ( at ) sussex.ac.uk  
  Corporate Author Thesis  
  Publisher The Company of Biologists Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32665443 Approved no  
  Call Number IDA @ john @ Serial 3402  
Permanent link to this record
 

 
Author Rowse, E.G., Lewanzik, D.; Stone, E.L.; Harris, S.; Jones, G. url  doi
isbn  openurl
  Title Dark Matters: The Effects of Artificial Lighting on Bats Type Book Chapter
  Year 2015 Publication Bats in the Anthropocene: Conservation of Bats in a Changing World Abbreviated Journal  
  Volume Issue Pages 187-213  
  Keywords Animals; bats; vertebrates; ecology; artificial light at night; climate change  
  Abstract While artificial lighting is a major component of global change, its biological impacts have only recently been recognised. Artificial lighting attracts and repels animals in taxon-specific ways and affects physiological processes. Being nocturnal, bats are likely to be strongly affected by artificial lighting. Moreover, many species of bats are insectivorous, and insects are also strongly influenced by lighting. Lighting technologies are changing rapidly, with the use of light-emitting diode (LED) lamps increasing. Impacts on bats and their prey depend on the light spectra produced by street lights ; ultraviolet (UV) wavelengths attract more insects and consequently insectivorous bats. Bat responses to lighting are species-specific and reflect differences in flight morphology and performance ; fast-flying aerial hawking species frequently feed around street lights, whereas relatively slow-flying bats that forage in more confined spaces are often light-averse. Both high-pressure sodium and LED lights reduce commuting activity by clutter-tolerant bats of the genera Myotis and Rhinolophus, and these bats still avoided LED lights when dimmed. Light-induced reductions in the activity of frugivorous bats may affect ecosystem services by reducing dispersal of the seeds of pioneer plants and hence reforestation. Rapid changes in street lighting offer the potential to explore mitigation methods such as part-night lighting (PNL), dimming, directed lighting, and motion-sensitive lighting that may have beneficial consequences for light-averse bat specie.  
  Address (down) School of Life Sciences, University of Bristol, Bristol, UK; Gareth.Jones(at)bristol.ac.uk  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor Voigt, C.C.; Kingston; T.  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-319-25218-6 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1320  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: