toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Ardavani, O.; Zerefos, S.; Doulos, L.T. url  doi
openurl 
  Title Redesigning the exterior lighting as part of the urban landscape: The role of transgenic bioluminescent plants in mediterranean urban and suburban lighting environments Type Journal Article
  Year 2020 Publication Journal of Cleaner Production Abbreviated Journal Journal of Cleaner Production  
  Volume 242 Issue Pages 118477  
  Keywords Plants; Lighting  
  Abstract This research discusses the feasibility of replacing or supporting artificial lighting with Transgenic Bioluminescent Plants (TBP), as a means of minimizing light pollution, reducing electrical energy consumption and de-carbonizing urban and suburban outdoor environments, creating sustainable conditions and enriching the quality of life. Until now, no information is given about the light output of any TBPs and the question “Are the TBPs capable of producing the necessary lighting levels for exterior lighting?” is unanswered. For this reason, a new methodology is proposed for selecting and analyzing the lighting output potential of transgenic plants ted for specific climatic conditions. This methodology considers growth and reduction factors, as well as a formulae for estimating the plants’ luminous output by performing light measurements. Results show that transgenic plants in medium growth can emit a median luminous flux of up to 57 lm, a value that can definitely support low lighting requirements when used in large numbers of plants. From the lighting measurements and calculations performed in this research, the light output of the TBPs for a typical road with 5m width was found equal to 2lx. The amount of plants required was 40 at each side of the road for every 30m of streets with P6 road class. The results show that the use of bioluminescent plants can actually contribute to the reduction of energy consumption, concerning only the lighting criterium, thus creating an enormous opportunity for a new state-of- the-art market and research that could potentially minimize CO2 emissions and light pollution, improve urban and suburban microclimate, mitigate the effects of climate change, as well as provide an alternative means of lighting affecting both outdoor lighting design and landscape planning in suburban and urban settings. Moreover, further research should be applied considering also other possible ecological impacts before applying TBPs for exterior lighting applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2711  
Permanent link to this record
 

 
Author (up) Arderne, C.; Zorn, C.; Nicolas, C.; Koks, E.E. url  doi
openurl 
  Title Predictive mapping of the global power system using open data Type Journal Article
  Year 2020 Publication Scientific Data Abbreviated Journal Sci Data  
  Volume 7 Issue 1 Pages 19  
  Keywords Remote Sensing  
  Abstract Limited data on global power infrastructure makes it difficult to respond to challenges in electricity access and climate change. Although high-voltage data on transmission networks are often available, medium- and low-voltage data are often non-existent or unavailable. This presents a challenge for practitioners working on the electricity access agenda, power sector resilience or climate change adaptation. Using state-of-the-art algorithms in geospatial data analysis, we create a first composite map of the global power system with an open license. We find that 97% of the global population lives within 10 km of a MV line, but with large variations between regions and income levels. We show an accuracy of 75% across our validation set of 14 countries, and we demonstrate the value of these data at both a national and regional level. The results from this study pave the way for improved efforts in electricity modelling and planning and are an important step in tackling the Sustainable Development Goals.  
  Address Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-4463 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31941897 Approved no  
  Call Number GFZ @ kyba @ Serial 2816  
Permanent link to this record
 

 
Author (up) Arellano, B.; Roca, J. url  doi
openurl 
  Title The Extraction Of Urbanized Areas Through Images Of High Resolution Nighttime Lights Type Journal Article
  Year 2020 Publication ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Abbreviated Journal Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.  
  Volume Xliii-B3-2020 Issue Pages 649-655  
  Keywords Remote Sensing  
  Abstract Satellite nocturnal images of the earth are a useful way to identify urbanisation. Nighttime lights have been used in a variety of scientific contributions, including studies on the identification of metropolitan areas as well as landscapes impacted by urbanization. However, the study of urban systems by nighttime light imagery has had a fundamental limitation to date: the low spatial resolution of satellite sensors. Although the DMSP Operational Linescan System (OLS) has been gathering global low-light imaging data for over 40 years, its 2.7 km/pixel footprint has limited its use for in-depth studies of urban development. The 2011 launch by NASA and the NOAA of the Suomi National Polar Partnership (SNPP) satellite, with the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on board, has led to a significant improvement. This instrument has better spatial resolution (742 m/pixel), on-board calibration, a greater radiometric range, and fewer saturation and blooming problems than DMSP-OLS data. However, it still has considerable limitations for the in-depth study of the area and internal structure of urban systems.

The launch of Luojia 1-01 in June 2018 has increased expectations. LJ1-01 is a nano satellite that can obtain high-resolution nocturnal images (130 metres/pixel). The aim of this paper is to analyse, and compare with previous satellites, the new instrument’s capacity to delimit the urbanised area and its efficiency in identifying types of urban landscape (compact, dispersed and rurban). The study cases are Barcelona Metropolitan Region (Spain) and Shenzhen City (China).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2194-9034 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 3106  
Permanent link to this record
 

 
Author (up) Arendt, J. url  doi
openurl 
  Title Biological rhythms during residence in polar regions Type Journal Article
  Year 2012 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 29 Issue 4 Pages 379-394  
  Keywords *Acclimatization; Activities of Daily Living; Affect; Antarctic Regions; Arctic Regions; *Biological Clocks; *Circadian Rhythm; *Cold Climate; *Cold Temperature; Energy Metabolism; Feeding Behavior; Humans; Melatonin/metabolism; Personnel Staffing and Scheduling; *Photoperiod; Seasonal Affective Disorder/physiopathology/prevention & control/psychology; *Seasons; Sleep; Sleep Disorders, Circadian Rhythm/etiology/physiopathology/*prevention & control/psychology; Time Factors; Workload; Workplace  
  Abstract At Arctic and Antarctic latitudes, personnel are deprived of natural sunlight in winter and have continuous daylight in summer: light of sufficient intensity and suitable spectral composition is the main factor that maintains the 24-h period of human circadian rhythms. Thus, the status of the circadian system is of interest. Moreover, the relatively controlled artificial light conditions in winter are conducive to experimentation with different types of light treatment. The hormone melatonin and/or its metabolite 6-sulfatoxymelatonin (aMT6s) provide probably the best index of circadian (and seasonal) timing. A frequent observation has been a delay of the circadian system in winter. A skeleton photoperiod (2 x 1-h, bright white light, morning and evening) can restore summer timing. A single 1-h pulse of light in the morning may be sufficient. A few people desynchronize from the 24-h day (free-run) and show their intrinsic circadian period, usually >24 h. With regard to general health in polar regions, intermittent reports describe abnormalities in various physiological processes from the point of view of daily and seasonal rhythms, but positive health outcomes are also published. True winter depression (SAD) appears to be rare, although subsyndromal SAD is reported. Probably of most concern are the numerous reports of sleep problems. These have prompted investigations of the underlying mechanisms and treatment interventions. A delay of the circadian system with “normal” working hours implies sleep is attempted at a suboptimal phase. Decrements in sleep efficiency, latency, duration, and quality are also seen in winter. Increasing the intensity of ambient light exposure throughout the day advanced circadian phase and was associated with benefits for sleep: blue-enriched light was slightly more effective than standard white light. Effects on performance remain to be fully investigated. At 75 degrees S, base personnel adapt the circadian system to night work within a week, in contrast to temperate zones where complete adaptation rarely occurs. A similar situation occurs on high-latitude North Sea oil installations, especially when working 18:00-06:00 h. Lack of conflicting light exposure (and “social obligations”) is the probable explanation. Many have problems returning to day work, showing circadian desynchrony. Timed light treatment again has helped to restore normal phase/sleep in a small number of people. Postprandial response to meals is compromised during periods of desynchrony with evidence of insulin resistance and elevated triglycerides, risk factors for heart disease. Only small numbers of subjects have been studied intensively in polar regions; however, these observations suggest that suboptimal light conditions are deleterious to health. They apply equally to people living in temperate zones with insufficient light exposure.  
  Address Centre for Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK. arendtjo@gmail.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22497433; PMCID:PMC3793275 Approved no  
  Call Number IDA @ john @ Serial 143  
Permanent link to this record
 

 
Author (up) Arendt, J.; Middleton, B. url  doi
openurl 
  Title Human seasonal and circadian studies in Antarctica (Halley, 75 degrees S) Type Journal Article
  Year 2018 Publication General and Comparative Endocrinology Abbreviated Journal Gen Comp Endocrinol  
  Volume 258 Issue Pages 250-258  
  Keywords Human Activities; Acclimatization/*physiology; Actigraphy; Adult; Antarctic Regions; Behavior/*physiology; Circadian Rhythm/*physiology; Darkness; Female; Heart Rate/physiology; Humans; Libido; Light; Male; Melatonin/blood; Photoperiod; *Seasons; Sleep/physiology; Young Adult; *Antarctica; *Circadian; *Light; *Melatonin; *Seasonal  
  Abstract Living for extended periods in Antarctica exposes base personnel to extremes of daylength (photoperiod) and temperature. At the British Antarctic Survey base of Halley, 75 degrees S, the sun does not rise for 110 d in the winter and does not set for 100 d in summer. Photoperiod is the major time cue governing the timing of seasonal events such as reproduction in many species. The neuroendocrine signal providing photoperiodic information to body physiology is the duration of melatonin secretion which reflects the length of the night: longer in the short days of winter and shorter in summer. Light of sufficient intensity and spectral composition serves to suppress production of melatonin and to set the circadian timing and the duration of the rhythm. In humans early observations suggested that bright (>2000 lux) white light was needed to suppress melatonin completely. Shortly thereafter winter depression (Seasonal Affective Disorder or SAD) was described, and its successful treatment by an artificial summer photoperiod of bright white light, sufficient to shorten melatonin production. At Halley dim artificial light intensity during winter was measured, until 2003, at a maximum of approximately 500 lux in winter. Thus a strong seasonal and circadian time cue was absent. It seemed likely that winter depression would be common in the extended period of winter darkness and could be treated with an artificial summer photoperiod. These observations, and predictions, inspired a long series of studies regarding human seasonal and circadian status, and the effects of light treatment, in a small overwintering, isolated community, living in the same conditions for many months at Halley. We found little evidence of SAD, or change in duration of melatonin production with season. However the timing of the melatonin rhythm itself, and/or that of its metabolite 6-sulphatoxymelatonin (aMT6s), was used as a primary marker of seasonal, circadian and treatment changes. A substantial phase delay of melatonin in winter was advanced to summer phase by a two pulse 'skeleton' bright white light treatment. Subsequently a single morning pulse of bright white light was effective with regard to circadian phase and improved daytime performance. The circadian delay evidenced by melatonin was accompanied by delayed sleep (logs and actigraphy): poor sleep is a common complaint in Polar regions. Appropriate extra artificial light, both standard white, and blue enriched, present throughout the day, effectively countered delay in sleep timing and the aMT6s rhythm. The most important factor appeared to be the maximum light experienced. Another manifestation of the winter was a decline in self-rated libido (men only on base at this time). Women on the base showed lower aspects of physical and mental health compared to men. Free-running rhythms were seen in some subjects following night shift, but were rarely found at other times, probably because this base has strongly scheduled activity and leisure time. Complete circadian adaptation during a week of night shift, also seen in a similar situation on North Sea oil rigs, led to problems readapting back to day shift in winter, compared to summer. Here again timed light treatment was used to address the problem. Sleep, alertness and waking performance are critically dependent on optimum circadian phase. Circadian desynchrony is associated with increased risk of major disease in shift workers. These studies provide some groundwork for countering/avoiding circadian desynchrony in rather extreme conditions.  
  Address Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK. Electronic address: b.middleton@surrey.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-6480 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28526480 Approved no  
  Call Number IDA @ john @ Serial 2248  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: