Records |
Author  |
Aubé, M.; Roby, J.; Kocifaj, M. |
Title |
Evaluating potential spectral impacts of various artificial lights on melatonin suppression, photosynthesis, and star visibility |
Type |
Journal Article |
Year |
2013 |
Publication |
PloS one |
Abbreviated Journal |
PLoS One |
Volume |
8 |
Issue |
7 |
Pages |
e67798 |
Keywords |
Humans; *Light; Lighting/methods; Melatonin/*metabolism; Photosynthesis/*radiation effects; Plant Development/radiation effects; blue light; circadian disruption |
Abstract |
Artificial light at night can be harmful to the environment, and interferes with fauna and flora, star visibility, and human health. To estimate the relative impact of a lighting device, its radiant power, angular photometry and detailed spectral power distribution have to be considered. In this paper we focus on the spectral power distribution. While specific spectral characteristics can be considered harmful during the night, they can be considered advantageous during the day. As an example, while blue-rich Metal Halide lamps can be problematic for human health, star visibility and vegetation photosynthesis during the night, they can be highly appropriate during the day for plant growth and light therapy. In this paper we propose three new indices to characterize lamp spectra. These indices have been designed to allow a quick estimation of the potential impact of a lamp spectrum on melatonin suppression, photosynthesis, and star visibility. We used these new indices to compare various lighting technologies objectively. We also considered the transformation of such indices according to the propagation of light into the atmosphere as a function of distance to the observer. Among other results, we found that low pressure sodium, phosphor-converted amber light emitting diodes (LED) and LED 2700 K lamps filtered with the new Ledtech's Equilib filter showed a lower or equivalent potential impact on melatonin suppression and star visibility in comparison to high pressure sodium lamps. Low pressure sodium, LED 5000 K-filtered and LED 2700 K-filtered lamps had a lower impact on photosynthesis than did high pressure sodium lamps. Finally, we propose these indices as new standards for the lighting industry to be used in characterizing their lighting technologies. We hope that their use will favor the design of new environmentally and health-friendly lighting technologies. |
Address |
Departement de physique, Cegep de Sherbrooke, Sherbrooke, Quebec, Canada. martin.aube@cegepsherbrooke.qc.ca |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1932-6203 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:23861808; PMCID:PMC3702543 |
Approved |
no |
Call Number |
IDA @ john @ |
Serial |
282 |
Permanent link to this record |
|
|
|
Author  |
Aubé, M.; Simoneau, A. |
Title |
New features to the night sky radiance model illumina: Hyperspectral support, improved obstacles and cloud reflection |
Type |
Journal Article |
Year |
2018 |
Publication |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Abbreviated Journal |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Volume |
211 |
Issue |
|
Pages |
25-34 |
Keywords |
|
Abstract |
Illumina is one of the most physically detailed artificial night sky brightness model to date. It has been in continuous development since 2005 [1]. In 2016–17, many improvements were made to the Illumina code including an overhead cloud scheme, an improved blocking scheme for subgrid obstacles (trees and buildings), and most importantly, a full hyperspectral modeling approach. Code optimization resulted in significant reduction in execution time enabling users to run the model on standard personal computers for some applications.
After describing the new schemes introduced in the model, we give some examples of applications for a peri-urban and a rural site both located inside the International Dark Sky reserve of Mont-Mégantic (QC, Canada). |
Address |
Cégep de Sherbrooke, 475, rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada; martin.aube(at)cegepsherbrooke.qc.ca |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
English |
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0022-4073 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
IDA @ john @ |
Serial |
1818 |
Permanent link to this record |
|
|
|
Author  |
Aubé, M.; Simoneau, A.; Muñoz-Tuñón, C.; Díaz-Castro, J.; Serra-Ricart, M. |
Title |
Restoring the night sky darkness at Observatorio del Teide: First application of the model Illumina version 2 |
Type |
Journal Article |
Year |
2020 |
Publication |
Monthly Notices of the Royal Astronomical Society |
Abbreviated Journal |
|
Volume |
497 |
Issue |
3 |
Pages |
2501-2516 |
Keywords |
Skyglow; Teide Observatory; Tenerife; Spain; modeling; Illumina; numerical methods |
Abstract |
The propagation of artificial light into real environments is complex. To perform its numerical modelling with accuracy, one must consider hyperspectral properties of the lighting devices and their geographic positions, the hyperspectral properties of the ground reflectance, the size and distribution of small-scale obstacles, the blocking effect of topography, the lamps angular photometry and the atmospheric transfer function (aerosols and molecules). A detailed radiative transfer model can be used to evaluate how a particular change in the lighting infrastructure may affect the sky radiance. In this paper, we use the new version (v2) of the Illumina model to evaluate a night sky restoration plan for the Teide Observatory located on the island of Tenerife, Spain. In the past decades, the sky darkness was severely degraded by growing light pollution on the Tenerife Island. In this work, we use the contribution maps giving the effect of each pixel of the territory to the artificial sky radiance. We exploit the hyperspectral capabilities of Illumina v2 and show how the contribution maps can be integrated over regions or municipalities according to the Johnson–Cousins photometric bands spectral sensitivities. The sky brightness reductions per municipality after a complete shutdown and a conversion to light-emitting diodes are calculated in the Johnson–Cousins B, V, R bands. We found that the conversion of the lighting infrastructure of Tenerife with LED (1800 and 2700 K), according to the conversion strategy in force, would result in a zenith V-band sky brightness reduction of ≈0.3 mag arcsec−2. |
Address |
Département de physique, Cégep de Sherbrooke, Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada; martin.aube ( at ) cegepsherbrooke.qc.ca |
Corporate Author |
|
Thesis |
|
Publisher |
Oxford Academic |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
English |
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0035-8711 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
IDA @ john @ |
Serial |
3406 |
Permanent link to this record |
|
|
|
Author  |
Aubé, M.; Simoneau, A.; Wainscoat, R.; Nelson, L. |
Title |
Modeling the effects of phosphor converted LED lighting to the night sky of the Haleakala Observatory, Hawaii |
Type |
Journal Article |
Year |
2018 |
Publication |
Monthly Notices of the Royal Astronomical Society |
Abbreviated Journal |
|
Volume |
478 |
Issue |
2 |
Pages |
1776-1783 |
Keywords |
Skyglow |
Abstract |
The goal of this study is to evaluate the current level of light pollution in the night sky at the Haleakala Observatory on the island of Maui in Hawaii. This is accomplished with a numerical model that was tested in the first International Dark Sky Reserve located in Mont-Mégantic National Park in Canada. The model uses ground data on the artificial light sources present in the region of study, geographical data, and remotely sensed data for: 1) the nightly upward radiance; 2) the terrain elevation; and, 3) the ground spectral reflectance of the region. The results of the model give a measure of the current state of the sky spectral radiance at the Haleakala Observatory. Then, using the current state as a reference point, multiple light conversion plans are elaborated and evaluated using the model. We can thus estimate the expected impact of each conversion plan on the night sky radiance spectrum. A complete conversion to white (LEDs) with (CCT) of 4000K and 3000K are contrasted with a conversion using (PC) amber (LEDs). We include recommendations concerning the street lamps to be used in sensitive areas like the cities of Kahului and Kihei and suggest best lighting practices related to the color of lamps used at night. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0035-8711 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
1907 |
Permanent link to this record |
|
|
|
Author  |
Aubrecht, C.; Elvidge, C. D.; Ziskin, D.; Longcore, T.; Rich, C. |
Title |
'When the lights stay on' – A novel approach to assessing human impact on the environment. Earth. |
Type |
Journal Article |
Year |
2008 |
Publication |
Earthzine |
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
|
Keywords |
Ecology |
Abstract |
A consequence of the explosive expansion of human civilization has been the global loss of biodiversity and changes to life-sustaining geophysical processes of Earth. The footprint of human occupation is uniquely visible from space in the form of artificial night lighting – ranging from the burning of the rainforest to massive offshore fisheries to omnipresent lights of cities, towns, and villages. This article describes a novel approach to assessing global human impact using satellite observed nighttime lights. The results provide reef managers and governments a first-pass screening tool for reef conservation projects. Sites requiring restoration and precautionary actions can be identified and assessed further in more focused investigations. We hope to create a mental picture for others to see and encourage participation in maintaining and restoring the natural world. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
LoNNe @ schroer @ |
Serial |
569 |
Permanent link to this record |