|   | 
Details
   web
Records
Author Brüning, A.; Hölker, F.; Franke, S.; Preuer, T.; Kloas, W.
Title Spotlight on fish: Light pollution affects circadian rhythms of European perch but does not cause stress Type Journal Article
Year 2015 Publication Science of The Total Environment Abbreviated Journal
Volume 511 Issue Pages 516-522
Keywords animals; fish; Circadian Rhythm; melatonin; cortisol
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) LoNNe @ schroer @ Serial 1580
Permanent link to this record
 

 
Author Camus, Thomas; Zeng, Chaoshu
Title Effects of photoperiod on egg production and hatching success, naupliar and copepodite development, adult sex ratio and life expectancy of the tropical calanoid copepod Acartia sinjiensis Type Journal Article
Year 2008 Publication Aquaculture Abbreviated Journal
Volume 280 Issue 1-4 Pages 220-226
Keywords animals; Acartia sinjiensis; Egg production and hatching success; Life expectancy; Naupliar and copepodite development; Photoperiod; Sex ratio
Abstract The tropical calanoid copepod Acartia sinjiensis has good potential for mass culture as live feed for reef fish larvae. The present study was conducted to evaluate the effects of photoperiod on various parameters related to A. sinjiensis productivity in culture. Five photoperiods of Light:Dark = 0:24; 6:18; 12:12; 18:6 and 24:0h were setup. Daily egg production of individual females under each photoperiod was monitored for 8 consecutive days. The females were randomly selected daily from stock cultures kept under respective photoperiods and discarded after experiment. The results showed a clear trend of increasing egg production with longer illumination period. Under constant darkness, acclimatization was evident as egg output increased steadily over the 8??day period. Statistics showed that photoperiod significantly (p < 0.005) affected mean daily egg production, with the highest egg output recorded at 18L:6D and 24L:0D (17.6 ?? 1.7 and 17.6 ?? 1.8 eggs/female/day respectively), which were significantly higher than all other treatments. Photoperiod also significantly affected 48??h egg hatching success (p < 0.005), a trend of increased hatching success with longer light phase was demonstrated. The highest hatching rate (87.2 ?? 1.4%) was recorded at 24L:0D, which was significantly higher than the 0L:24D and 6L:18D treatments but not significantly different from the second highest (85.3 ?? 2.6%) hatching rate of 18L:6D treatment. Photoperiod was further confirmed to significantly (p < 0.005) affected naupliar and copepodite development with accelerated development observed with increased illumination period of photoperiods. Mean development time from egg to adult was the shortest at 6.00 ?? 0.33 days under constant light (24L:0D), followed by 6.24 ?? 0.24??days at 18L:6D, both were significantly shorter than that of 0L:24D and 6L:18D treatments although no significantly difference was detected between themselves. Adult life expectancy was also found significantly (p < 0.005) affected by photoperiod with the shortest adult life span recorded under constant light (24L:0D) (9.4 ?? 0.4??days), which was significantly shorter than all other photoperiods tested. Adult sex ratio was the only parameter tested that was not significantly affected by photoperiod, a skewed sex ratio in favor of female was found across all photoperiod treatments. Based on results of current study, it is recommended that a photoperiod of 18L:6D being adopted for A. sinjiensis culture to maximize its productivity for aquaculture hatcheries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) LoNNe @ schroer @ Serial 1581
Permanent link to this record
 

 
Author Dauchy, Robert T; Dauchy, Erin M; Tirrell, Robert P; Hill, Cody R; Davidson, Leslie K; Greene, Michael W; Tirrell, Paul C; Wu, Jinghai; Sauer, Leonard A; Blask, David E
Title Dark-phase light contamination disrupts circadian rhythms in plasma measures of endocrine physiology and metabolism in rats Type Journal Article
Year 2010 Publication Comparative Medicine Abbreviated Journal
Volume 60 Issue 5 Pages 348-356
Keywords Animals; Chronobiology Disorders; Rats
Abstract Dark-phase light contamination can significantly disrupt chronobiologic rhythms, thereby potentially altering the endocrine physiology and metabolism of experimental animals and influencing the outcome of scientific investigations. We sought to determine whether exposure to low-level light contamination during the dark phase influenced the normally entrained circadian rhythms of various substances in plasma. Male Sprague-Dawley rats (n = 6 per group) were housed in photobiologic light-exposure chambers configured to create 1) a 12:12-h light:dark cycle without dark-phase light contamination (control condition; 123 &#956;W/cm(2), lights on at 0600), 2) experimental exposure to a low level of light during the 12-h dark phase (with 0.02, 0.05, 0.06, or 0.08 &#956;W/cm(2) light at night), or 3) constant bright light (123 &#956;W/cm(2)). Dietary and water intakes were recorded daily. After 2 wk, rats underwent 6 low-volume blood draws at 4-h intervals (beginning at 0400) during both the light and dark phases. Circadian rhythms in dietary and water intake and levels of plasma total fatty acids and lipid fractions remained entrained during exposure to either control conditions or low-intensity light during the dark phase. However, these patterns were disrupted in rats exposed to constant bright light. Circadian patterns of plasma melatonin, glucose, lactic acid, and corticosterone were maintained in all rats except those exposed to constant bright light or the highest level of light during the dark phase. Therefore even minimal light contamination during the dark phase can disrupt normal circadian rhythms of endocrine metabolism and physiology and may alter the outcome of scientific investigations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) LoNNe @ schroer @ Serial 1582
Permanent link to this record
 

 
Author Dauchy, R T; Wren, M A; Dauchy, E M; Hoffman, A E; Hanifin, J P; Warfield, B; Jablonski, M R; Brainard, G C; Hill, S M; Mao, L; Dobek, G L; Dupepe, L M; Blask, D E
Title The influence of red light exposure at night on circadian metabolism and physiology in Sprague-Dawley rats Type Journal Article
Year 2015 Publication Journal of the American Association for Laboratory Animal Science Abbreviated Journal JAALAS
Volume 54 Issue 1 Pages 40-50
Keywords animals; rodents; Circadian Rhythm; Light wavelength
Abstract Early studies on rodents showed that short-term exposure to high-intensity light (> 70 lx) above 600 nm (red-appearing) influences circadian neuroendocrine and metabolic physiology. Here we addressed the hypothesis that long-term, low-intensity red light exposure at night (rLEN) from a 'safelight' emitting no light below approximately 620 nm disrupts the nocturnal circadian melatonin signal as well as circadian rhythms in circulating metabolites, related regulatory hormones, and physi- ologic parameters. Male Sprague-Dawley rats (n = 12 per group) were maintained on control 12:12-h light:dark (300 lx; lights on, 0600) or experimental 12:12 rLEN (8.1 lx) lighting regimens. After 1 wk, rats underwent 6 low-volume blood draws via cardiocentesis (0400, 0800, 1200, 1600, 2000, and 2400) over a 4-wk period to assess arterial plasma melatonin, total fatty acid, glucose, lactic acid, pO2, pCO2, insulin, leptin and corticosterone concentrations. Results revealed plasma melatonin levels (mean +/- 1 SD) were high in the dark phase (197.5 +/- 4.6 pg/mL) and low in the light phase (2.6 +/- 1.2 pg/mL) of control condi- tions and significantly lower than controls under experimental conditions throughout the 24-h period (P < 0.001). Prominent circadian rhythms of plasma levels of total fatty acid, glucose, lactic acid, pO2, pCO2, insulin, leptin, and corticosterone were significantly (P < 0.05) disrupted under experimental conditions as compared with the corresponding entrained rhythms under control conditions. Therefore, chronic use of low-intensity rLEN from a common safelight disrupts the circadian organization of neuroendocrine, metabolic, and physiologic parameters indicative of animal health and wellbeing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) LoNNe @ schroer @ Serial 1583
Permanent link to this record
 

 
Author Davies, Thomas W; Bennie, Jonathan; Inger, Richard; Hempel de Ibarra, Natalie; Gaston, Kevin J
Title Artificial light pollution: are shifting spectral signatures changing the balance of species interactions? Type Journal Article
Year 2013 Publication Global Change Biologyology Abbreviated Journal
Volume 19 Issue 5 Pages 1417-1423
Keywords animals; ecosystems; species interaction; human vision
Abstract Technological developments in municipal lighting are altering the spectral characteristics of artificially lit habitats. Little is yet known of the biological consequences of such changes, although a variety of animal behaviours are dependent on detecting the spectral signature of light reflected from objects. Using previously published wavelengths of peak visual pigment absorbance, we compared how four alternative street lamp technologies affect the visual abilities of 213 species of arachnid, insect, bird, reptile and mammal by producing different wavelength ranges of light to which they are visually sensitive. The proportion of the visually detectable region of the light spectrum emitted by each lamp was compared to provide an indication of how different technologies are likely to facilitate visually guided behaviours such as detecting objects in the environment. Compared to narrow spectrum lamps, broad spectrum technologies enable animals to detect objects that reflect light over more of the spectrum to which they are sensitive and, importantly, create greater disparities in this ability between major taxonomic groups. The introduction of broad spectrum street lamps could therefore alter the balance of species interactions in the artificially lit environment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (down) LoNNe @ schroer @ Serial 1584
Permanent link to this record