|
Records |
Links |
|
Author |
Filho, C.R.D.S.; Zullo Jr, J.; Elvidge, C. |

|
|
Title |
Brazil's 2001 energy crisis monitored from space |
Type |
Journal Article |
|
Year |
2004 |
Publication |
International Journal of Remote Sensing |
Abbreviated Journal |
International Journal of Remote Sensing |
|
|
Volume |
25 |
Issue |
12 |
Pages |
2475-2482 |
|
|
Keywords |
Remote Sensing; Energy |
|
|
Abstract |
Data sensed by the US Air Force Defence Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) during the years 2000 and 2001 in Brazil were tested as a tool to monitor reduction of nocturnal lighting. This particular timing was examined as the Brazilian population and industry were forced to reduce electric power consumption by 20% during 2001, in relation to 2000, for a period of several months, starting officially on 1 June 2001. Large urban agglomerates were compelled to switch off city lights by at least the same amount. The Distrito Federal (DF), including the Brazilian capital, Brasilia, was one of the primary areas where the government actively sought electric power consumption reductions. Using the DF as a study case, we demonstrate that the mean grey levels derived from averaging DMSP-OLS data acquired over urban centres appear to be a useful index to monitor relative oscillations in energy consumption. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0143-1161 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number  |
GFZ @ kyba @ |
Serial |
2362 |
|
Permanent link to this record |
|
|
|
|
Author |
Ren, Z.; Liu, Y.; Chen, B.; Xu, B. |

|
|
Title |
Where Does Nighttime Light Come From? Insights from Source Detection and Error Attribution |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Remote Sensing |
Abbreviated Journal |
Remote Sensing |
|
|
Volume |
12 |
Issue |
12 |
Pages |
1922 |
|
|
Keywords |
Remote Sensing |
|
|
Abstract |
Nighttime light remote sensing has aroused great popularity because of its advantage in estimating socioeconomic indicators and quantifying human activities in response to the changing world. Despite many advances that have been made in method development and implementation of nighttime light remote sensing over the past decades, limited studies have dived into answering the question: Where does nighttime light come from? This hinders our capability of identifying specific sources of nighttime light in urbanized regions. Addressing this shortcoming, here we proposed a parcel-oriented temporal linear unmixing method (POTLUM) to identify specific nighttime light sources with the integration of land use data. Ratio of root mean square error was used as the measure to assess the unmixing accuracy, and parcel purity index and source sufficiency index were proposed to attribute unmixing errors. Using the Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime light dataset from the Suomi National Polar-Orbiting Partnership (NPP) satellite and the newly released Essential Urban Land Use Categories in China (EULUC-China) product, we applied the proposed method and conducted experiments in two China cities with different sizes, Shanghai and Quzhou. Results of the POTLUM showed its relatively robust applicability of detecting specific nighttime light sources, achieving an rRMSE of 3.38% and 1.04% in Shanghai and Quzhou, respectively. The major unmixing errors resulted from using impure land parcels as endmembers (i.e., parcel purity index for Shanghai and Quzhou: 54.48%, 64.09%, respectively), but it also showed that predefined light sources are sufficient (i.e., source sufficiency index for Shanghai and Quzhou: 96.53%, 99.55%, respectively). The method presented in this study makes it possible to identify specific sources of nighttime light and is expected to enrich the estimation of structural socioeconomic indicators, as well as better support various applications in urban planning and management. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2072-4292 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number  |
GFZ @ kyba @ |
Serial |
3032 |
|
Permanent link to this record |
|
|
|
|
Author |
Wuchterl, G.; Reithofer, M. |
|
|
Title |
Licht über Wien VII |
Type |
Journal Article |
|
Year |
2020 |
Publication |
|
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Skyglow; Energy |
|
|
Abstract |
231. Auf einen BlickDie Helligkeit des Wiener Nachthimmels hat sich stabilisiert. 2019 ist das zweite Jahr in Folge, in dem die Energie desLichts über Wien um weniger als 5 % zugenommen hat. Die Menge des künstlichen Lichts über Wien hat sich nach dem steilem Anstieg der Jahre 2009 bis 2014 auf hohem Niveau eingependelt..Es besteht ein enger Zusammenhang zwischen Licht- und Luftverschmutzung. Über 10 Jahre bestehende Korrelationen von Lichtimmissions- und Luftgüteindikatoren bestätigen dies. Auf dieser Erkenntnis beruht eine auf standardisierte Luft-güte-Bedingungen normierte Angabe der Globalstrahlung, mit der direkter auf die von der Stadt eingebrachten Lichtmenge geschlossen werden kann.Der Kunstlichthalo über Wien wurde mit einer neuen Methode vollständiger berechnet und enthält demnach deutlich mehr Energie als bisher angenommen. 500 Gigawattstunden und 100.000 Tonnen CO2-Äquivalent pro Jahr müssen als typischer Wert für eine Untergrenze angenommen werden. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Verein Kuffner-Sternwarte |
Place of Publication |
Vienna |
Editor |
|
|
|
Language |
German |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number  |
GFZ @ kyba @ |
Serial |
3033 |
|
Permanent link to this record |
|
|
|
|
Author |
Kyba, C.C.M.; Giuliani, G.; Franziskakis, F.; Tockner, K.; Lacroix, P. |

|
|
Title |
Artisanal and Small-Scale Mining Sites in the Democratic Republic of the Congo Are Not Associated with Nighttime Light Emissions |
Type |
Journal Article |
|
Year |
2019 |
Publication |
J |
Abbreviated Journal |
J |
|
|
Volume |
2 |
Issue |
2 |
Pages |
152-161 |
|
|
Keywords |
Remote Sensing |
|
|
Abstract |
Maintaining records of artisanal and small-scale mining sites in developing countries requires considerable effort, so it would be beneficial if Earth observation data from space could assist in the identifying and monitoring of such sites. Artificial light emissions are common at industrial-scale mining sites and have been associated with small-scale illegal mining in some contexts. Here, we examine whether known artisanal and small-scale mining sites in the Democratic Republic of the Congo (DRC) are associated with observations of night light emissions by the Visible Infrared Imaging Radiometer Suite Day/Night Band (DNB). Light emissions from the mining sites were not observed: the radiance observed from the sites was near zero and nearly identical to that observed for a set of randomly-chosen locations in the same region. While it is the case that DNB night lights’ products provide useful data in other resource extraction contexts, they do not appear to be useful for identifying artisanal mining sites in the DRC. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2571-8800 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number  |
GFZ @ kyba @ |
Serial |
2295 |
|
Permanent link to this record |
|
|
|
|
Author |
Ehlert, K.; Piepenbring, M.; Kollar, A. |

|
|
Title |
Ascospore release in apple scab underlies infrared sensation |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Fungal Biology |
Abbreviated Journal |
Fungal Biol |
|
|
Volume |
121 |
Issue |
12 |
Pages |
1054-1062 |
|
|
Keywords |
Plants |
|
|
Abstract |
The agent of apple scab disease (Venturia inaequalis) is the most common pathogen in apple cultivation. Its ascospores are released in spring, mainly during daylight hours and triggered by rain events. To investigate the causes of diurnal rhythm of ascospore dissemination of the apple scab fungus ascospore releases were examined continuously with spore traps in the orchard and with laboratory assays. One of the spore traps was illuminated at night with different light sources in each year during 2011-2015. The laboratory assays were performed with different light sources with varying wavelengths and intensities. In field and laboratory conditions only light including infrared radiation stimulated ascospore release, but not with light in the visible spectrum only. Artificial illumination during night was correlated with an increase of up to 46 % of ascospores released overnight in the field. We proved that infrared radiation induces V. inaequalis to release its spores. This is the first report in which spore discharge could be stimulated during night under field conditions. |
|
|
Address |
Julius Kuehn-Institut, Federal Research Center for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Schwabenheimer Strasse 101, 69221 Dossenheim, Germany |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1878-6146 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:29122177 |
Approved |
no |
|
|
Call Number  |
GFZ @ kyba @ |
Serial |
2454 |
|
Permanent link to this record |