toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Brüning, A.; Kloas, W.; Preuer, T.; Hölker, F. url  doi
openurl 
  Title Influence of artificially induced light pollution on the hormone system of two common fish species, perch and roach, in a rural habitat Type Journal Article
  Year 2018 Publication Conservation Physiology Abbreviated Journal  
  Volume 6 Issue 1 Pages  
  Keywords Animals  
  Abstract Almost all life on earth has adapted to natural cycles of light and dark by evolving circadian and circannual rhythms to synchronize behavioural and physiological processes with the environment. Artificial light at night (ALAN) is suspected to interfere with these rhythms. In this study we examined the influence of ALAN on nocturnal melatonin and sex steroid blood concentrations and mRNA expression of gonadotropins in the pituitary of European perch (Perca fluviatilis) and roach (Rutilus rutilus). In a rural experimental setting, fish were held in net cages in drainage channels experiencing either additional ALAN of ~15 lx at the water surface or natural light conditions at half-moon. No differences in melatonin concentrations between ALAN and natural conditions were detected. However, blood concentration of sex steroids (17β-estradiol; 11-ketotestosterone) as well as mRNA expression of gonadotropins (luteinizing hormone, follicle stimulating hormone) was reduced in both fish species. We conclude that ALAN can disturb biological rhythms in fish in urban waters. However, impacts on melatonin rhythm might have been blurred by individual differences, sampling methods and moonlight. The effect of ALAN on biomarkers of reproduction suggests a photo-labile period around the onset of gonadogenesis, including the experimental period (August). Light pollution therefore has a great potential to influence crucial life history traits with unpredictable outcome for fish population dynamics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2051-1434 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) GFZ @ kyba @ Serial 1858  
Permanent link to this record
 

 
Author van Langevelde, F.; van Grunsven, R.H.A.; Veenendaal, E.M.; Fijen, T.P.M. url  doi
openurl 
  Title Artificial night lighting inhibits feeding in moths Type Journal Article
  Year 2017 Publication Biology Letters Abbreviated Journal Biol Lett  
  Volume 13 Issue 3 Pages  
  Keywords Animals  
  Abstract One major, yet poorly studied, change in the environment is nocturnal light pollution, which strongly alters habitats of nocturnally active species. Artificial night lighting is often considered as driving force behind rapid moth population declines in severely illuminated countries. To understand these declines, the question remains whether artificial light causes only increased mortality or also sublethal effects. We show that moths subjected to artificial night lighting spend less time feeding than moths in darkness, with the shortest time under light conditions rich in short wavelength radiation. These findings provide evidence for sublethal effects contributing to moth population declines. Because effects are strong under various types of light compared with dark conditions, the potential of spectral alterations as a conservation tool may be overestimated. Therefore, restoration and maintenance of darkness in illuminated areas is essential for reversing declines of moth populations.  
  Address Plant Ecology and Nature Conservation Group, Wageningen University, Droevendaalsesteeg 3a, PO Box 47, 6700 AA Wageningen, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1744-9561 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28250209; PMCID:PMC5377031 Approved no  
  Call Number (up) GFZ @ kyba @ Serial 1859  
Permanent link to this record
 

 
Author Russo, D.; Cistrone, L.; Libralato, N.; Korine, C.; Jones, G.; Ancillotto, L. url  doi
openurl 
  Title Adverse effects of artificial illumination on bat drinking activity Type Journal Article
  Year 2017 Publication Animal Conservation Abbreviated Journal Anim Conserv  
  Volume 20 Issue 6 Pages 492-501  
  Keywords Animals  
  Abstract Artificial illumination at night (ALAN) alters many aspects of animal behaviour. Commuting and foraging bats have been found to be affected by ALAN, but no study has yet addressed the impact of lighting on drinking activity, despite its critical importance for bats. We experimentally illuminated cattle troughs used by drinking bats at four forest sites in Italy, and compared drinking activity and foraging activity under lit and dark conditions. We predicted that (1) the number of bat species and drinking events will be lower under illumination and (2) forest bat species will be more affected than edge specialists. We recorded 2549 drinking events from 12 species or species groups, most of which decreased drinking activity under illumination. The effects of ALAN on drinking were stronger than on foraging. Forest species never drank when the light was on. Edge‐foraging species reduced drinking activity while also increasing foraging under lit conditions. We highlight a previously overlooked negative effect of ALAN on bats, whose implications may be locally catastrophic. Given the importance of water sites for both bat foraging and drinking, their illumination should be forbidden, appropriately mitigated or, if necessary, compensated for with the creation of alternative drinking sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-9430 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) GFZ @ kyba @ Serial 1860  
Permanent link to this record
 

 
Author Tamir, R.; Lerner, A.; Haspel, C.; Dubinsky, Z.; Iluz, D. url  doi
openurl 
  Title The spectral and spatial distribution of light pollution in the waters of the northern Gulf of Aqaba (Eilat) Type Journal Article
  Year 2017 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 7 Issue Pages 42329  
  Keywords Measurement; Instrumentation; Remote Sensing  
  Abstract The urbanization of the shores of the Gulf of Aqaba has exposed the marine environment there, including unique fringing coral reefs, to strong anthropogenic light sources. Here we present the first in situ measurements of artificial nighttime light under water in such an ecosystem, with irradiance measured in 12 wavelength bands, at 19 measurement stations spread over 44 square km, and at 30 depths down to 30-m depth. At 1-m depth, we find downwelling irradiance values that vary from 4.6 x 10(-4) muW cm(-2) nm(-1) 500 m from the city to 1 x 10(-6) muW cm(-2) nm(-1) in the center of the gulf (9.5 km from the city) in the yellow channel (589-nm wavelength) and from 1.3 x 10(-4) muW cm(-2 )nm(-1) to 4.3 x 10(-5) muW cm(-2) nm(-1) in the blue channel (443-nm wavelength). Down to 10-m depth, we find downwelling irradiance values that vary from 1 x 10(-6) muW cm(-2 )nm(-1) to 4.6 x 10(-4) muW cm(-2) nm(-1) in the yellow channel and from 2.6 x 10(-5) muW cm(-2) nm(-1) to 1.3 x 10(-4) muW cm(-2) nm(-1) in the blue channel, and we even detected a signal at 30-m depth. This irradiance could influence such biological processes as the tuning of circadian clocks, the synchronization of coral spawning, recruitment and competition, vertical migration of demersal plankton, feeding patterns, and prey/predator visual interactions.  
  Address School of Agriculture and Environmental Studies, Beit Berl College, Kfar Saba, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28186138; PMCID:PMC5301253 Approved no  
  Call Number (up) GFZ @ kyba @ Serial 1861  
Permanent link to this record
 

 
Author Preciado, O.; Manzano, E. url  doi
openurl 
  Title Spectral characteristics of road surfaces and eye transmittance: Effects on energy efficiency of road lighting at mesopic levels Type Journal Article
  Year 2017 Publication Lighting Research & Technology Abbreviated Journal Lighting Research & Technology  
  Volume Issue Pages 147715351771822  
  Keywords Vision; Lighting  
  Abstract In 2010, the CIE published a recommended system for mesopic photometry based on visual performance. According to this system, scenes illuminated at mesopic levels with light sources of high S/P ratio, will produce better visual performance than those illuminated with light sources of a lower S/P ratio at equal photopic luminance. However, there could be other factors affected by SPD that, when quantified, could lead to a contradictory final effect. The scope of this paper was to evaluate how road lighting is affected by the spectral road surface reflectance and by the human eye transmittance as people get older. Our results suggest that the benefits of considering the mesopic vision effect for light sources with high S/P ratios are totally counteracted by the other two effects at mesopic luminances between 0.75 cd/m2 and 1.73 cd/m2 for people between 20 and 60 years of age, depending on the light source and the age of observers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-1535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) GFZ @ kyba @ Serial 1862  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: