|   | 
Details
   web
Records
Author Te Kulve, M.; Schlangen, L.J.M.; van Marken Lichtenbelt, W.D.
Title Early evening light mitigates sleep compromising physiological and alerting responses to subsequent late evening light Type Journal Article
Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 9 Issue 1 Pages (down) 16064
Keywords Human Health
Abstract The widespread use of electric light and electronic devices has resulted in an excessive exposure to light during the late-evening and at night. This late light exposure acutely suppresses melatonin and sleepiness and delays the circadian clock. Here we investigate whether the acute effects of late-evening light exposure on our physiology and sleepiness are reduced when this light exposure is preceded by early evening bright light. Twelve healthy young females were included in a randomised crossover study. All participants underwent three evening (18:30-00:30) sessions during which melatonin, subjective sleepiness, body temperature and skin blood flow were measured under different light conditions: (A) dim light, (B) dim light with a late-evening (22:30-23:30) light exposure of 750 lx, 4000 K, and (C) the same late-evening light exposure, but now preceded by early-evening bright light exposure (18.30-21.00; 1200 lx, 4000 K). Late-evening light exposure reduced melatonin levels and subjective sleepiness and resulted in larger skin temperature gradients as compared to dim. Interestingly, these effects were reduced when the late-evening light was preceded by an early evening 2.5-hour bright light exposure. Thus daytime and early-evening exposure to bright light can mitigate some of the sleep-disruptive consequences of light exposure in the later evening.
Address Department of Human Biology & Movement Sciences, NUTRIM, Maastricht University, Maastricht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:31690740; PMCID:PMC6831674 Approved no
Call Number GFZ @ kyba @ Serial 2751
Permanent link to this record
 

 
Author Qiu, S.; Shao, X.; Cao, C.; Uprety, S.
Title Feasibility demonstration for calibrating Suomi-National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite day/night band using Dome C and Greenland under moon light Type Journal Article
Year 2016 Publication Journal of Applied Remote Sensing Abbreviated Journal J. Appl. Remote Sens
Volume 10 Issue 1 Pages (down) 016024
Keywords Remote Sensing; Instrumentation
Abstract The day/night band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi National Polar-orbiting Partnership (Suomi-NPP) represents a major advancement in night time imaging capabilities. DNB covers almost seven orders of magnitude in its dynamic range from full sunlight to half-moon. To achieve this large dynamic range, it uses four charge-coupled device arrays in three gain stages. The low gain stage (LGS) gain is calibrated using the solar diffuser. In operations, the medium and high gain stage values are determined by multiplying the gain ratios between the medium gain stage, and LGS, and high gain stage (HGS) and LGS, respectively. This paper focuses on independently verifying the radiometric accuracy and stability of DNB HGS using DNB observations of ground vicarious calibration sites under lunar illumination at night. Dome C in Antarctica in the southern hemisphere and Greenland in the northern hemisphere are chosen as the vicarious calibration sites. Nadir observations of these high latitude regions by VIIRS are selected during perpetual night season, i.e., from April to August for Dome C and from November to January for Greenland over the years 2012 to 2013. Additional selection criteria, such as lunar phase being more than half-moon and no influence of straylight effects, are also applied in data selection. The lunar spectral irradiance model, as a function of Sun–Earth–Moon distances and lunar phase, is used to determine the top-of-atmosphere reflectance at the vicarious site. The vicariously derived long-term reflectance from DNB observations agrees with the reflectance derived from Hyperion observations. The vicarious trending of DNB radiometric performance using DOME-C and Greenland under moon light shows that the DNB HGS radiometric variability (relative accuracy to lunar irradiance model and Hyperion observation) is within 8%. Residual variability is also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1931-3195 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1372
Permanent link to this record
 

 
Author Mishra, I.; Knerr, R.M.; Stewart, A.A.; Payette, W.I.; Richter, M.M.; Ashley, N.T.
Title Light at night disrupts diel patterns of cytokine gene expression and endocrine profiles in zebra finch (Taeniopygia guttata) Type Journal Article
Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 9 Issue 1 Pages (down) 15833
Keywords Animals
Abstract Increased exposure to light pollution perturbs physiological processes through misalignment of daily rhythms at the cellular and tissue levels. Effects of artificial light-at-night (ALAN) on diel properties of immunity are currently unknown. We therefore tested the effects of ALAN on diel patterns of cytokine gene expression, as well as key hormones involved with the regulation of immunity, in zebra finches (Taeniopygia guttata). Circulating melatonin and corticosterone, and mRNA expression levels of pro- (IL-1beta, IL-6) and anti-inflammatory (IL-10) cytokines were measured at six time points across 24-h day in brain (nidopallium, hippocampus, and hypothalamus) and peripheral tissues (liver, spleen, and fat) of zebra finches exposed to 12 h light:12 h darkness (LD), dim light-at-night (DLAN) or constant bright light (LLbright). Melatonin and corticosterone concentrations were significantly rhythmic under LD, but not under LLbright and DLAN. Genes coding for cytokines showed tissue-specific diurnal rhythms under LD and were lost with exposure to LLbright, except IL-6 in hypothalamus and liver. In comparison to LLbright, effects of DLAN were less adverse with persistence of some diurnal rhythms, albeit with significant waveform alterations. These results underscore the circadian regulation of biosynthesis of immune effectors and imply the susceptibility of daily immune and endocrine patterns to ALAN.
Address Department of Biology, Western Kentucky University, Bowling Green, KY, USA. noah.ashley@wku.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:31676761; PMCID:PMC6825233 Approved no
Call Number GFZ @ kyba @ Serial 2766
Permanent link to this record
 

 
Author Miller, S.D.; Mills, S.P.; Elvidge, C.D.; Lindsey, D.T.; Lee, T.F.; Hawkins, J.D.
Title Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities Type Journal Article
Year 2012 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A
Volume 109 Issue 39 Pages (down) 15706-15711
Keywords Suomi NPP; satellite; remote sensing; light at night
Abstract Most environmental satellite radiometers use solar reflectance information when it is available during the day but must resort at night to emission signals from infrared bands, which offer poor sensitivity to low-level clouds and surface features. A few sensors can take advantage of moonlight, but the inconsistent availability of the lunar source limits measurement utility. Here we show that the Day/Night Band (DNB) low-light visible sensor on the recently launched Suomi National Polar-orbiting Partnership (NPP) satellite has the unique ability to image cloud and surface features by way of reflected airglow, starlight, and zodiacal light illumination. Examples collected during new moon reveal not only meteorological and surface features, but also the direct emission of airglow structures in the mesosphere, including expansive regions of diffuse glow and wave patterns forced by tropospheric convection. The ability to leverage diffuse illumination sources for nocturnal environmental sensing applications extends the advantages of visible-light information to moonless nights.
Address Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO 80523, USA. steven.miller@colostate.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:22984179; PMCID:PMC3465370 Approved no
Call Number IDA @ john @ Serial 220
Permanent link to this record
 

 
Author Holzhauer S.I.J.; Franke S.; Kyba C.C.M.; Manfrin A.; Klenke R.; Voigt C.C.; Lewanzik D.; Oehlert M.; Monaghan M.T.; Schneider S.; Heller S.; Kuechly H.; Brüning A.; Honnen A.-C.; Hölker F.
Title Out of the Dark: Establishing a Large-Scale Field Experiment to Assess the Effects of Artificial Light at Night on Species and Food Webs Type Journal Article
Year 2015 Publication Sustainability Abbreviated Journal
Volume 7 Issue 11 Pages (down) 15593-15616
Keywords ALAN; artificial light at night; ecosystems; freshwater; light pollution; loss of the night; photometric characterization; riparian; Verlust der Nacht
Abstract Artificial light at night (ALAN) is one of the most obvious hallmarks of human presence in an ecosystem. The rapidly increasing use of artificial light has fundamentally transformed nightscapes throughout most of the globe, although little is known about how ALAN impacts the biodiversity and food webs of illuminated ecosystems. We developed a large-scale experimental infrastructure to study the effects of ALAN on a light-naïve, natural riparian (i.e., terrestrial-aquatic) ecosystem. Twelve street lights (20 m apart) arranged in three rows parallel to an agricultural drainage ditch were installed on each of two sites located in a grassland ecosystem in northern Germany. A range of biotic, abiotic, and photometric data are collected regularly to study the short- and long-term effects of ALAN on behavior, species interactions, physiology, and species composition of communities. Here we describe the infrastructure setup and data collection methods, and characterize the study area including photometric measurements. None of the measured parameters differed significantly between sites in the period before illumination. Results of one short-term experiment, carried out with one site illuminated and the other acting as a control, demonstrate the attraction of ALAN by the immense and immediate increase of insect catches at the lit street lights. The experimental setup provides a unique platform for carrying out interdisciplinary research on sustainable lighting.
Address Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301/310, 12587 Berlin, Germany; holzhauer(at)igb-berlin.de
Corporate Author Thesis
Publisher MDPI Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 1305
Permanent link to this record