|   | 
Details
   web
Records
Author Sanders, D.; Kehoe, R.; Tiley, K.; Bennie, J.; Cruse, D.; Davies, T.W.; Frank van Veen, F.J.; Gaston, K.J.
Title Artificial nighttime light changes aphid-parasitoid population dynamics Type Journal Article
Year 2015 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 5 Issue Pages (down) 15232
Keywords Ecology; animals; plants
Abstract Artificial light at night (ALAN) is recognized as a widespread and increasingly important anthropogenic environmental pressure on wild species and their interactions. Understanding of how these impacts translate into changes in population dynamics of communities with multiple trophic levels is, however, severely lacking. In an outdoor mesocosm experiment we tested the effect of ALAN on the population dynamics of a plant-aphid-parasitoid community with one plant species, three aphid species and their specialist parasitoids. The light treatment reduced the abundance of two aphid species by 20% over five generations, most likely as a consequence of bottom-up effects, with reductions in bean plant biomass being observed. For the aphid Megoura viciae this effect was reversed under autumn conditions with the light treatment promoting continuous reproduction through asexuals. All three parasitoid species were negatively affected by the light treatment, through reduced host numbers and we discuss induced possible behavioural changes. These results suggest that, in addition to direct impacts on species behaviour, the impacts of ALAN can cascade through food webs with potentially far reaching effects on the wider ecosystem.
Address Environment &Sustainability Institute, University of Exeter, Cornwall Campus Penryn, Cornwall, TR10 9EZ, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:26472251; PMCID:PMC4607942 Approved no
Call Number LoNNe @ kyba @ Serial 1290
Permanent link to this record
 

 
Author Quinn, D.; Kress, D.; Chang, E.; Stein, A.; Wegrzynski, M.; Lentink, D.
Title How lovebirds maneuver through lateral gusts with minimal visual information Type Journal Article
Year 2019 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A
Volume 116 Issue 30 Pages (down) 15033-15041
Keywords Animals; bird; control; flight; gust; visual
Abstract Flying birds maneuver effectively through lateral gusts, even when gust speeds are as high as flight speeds. What information birds use to sense gusts and how they compensate is largely unknown. We found that lovebirds can maneuver through 45 degrees lateral gusts similarly well in forest-, lake-, and cave-like visual environments. Despite being diurnal and raised in captivity, the birds fly to their goal perch with only a dim point light source as a beacon, showing that they do not need optic flow or a visual horizon to maneuver. To accomplish this feat, lovebirds primarily yaw their bodies into the gust while fixating their head on the goal using neck angles of up to 30 degrees . Our corroborated model for proportional yaw reorientation and speed control shows how lovebirds can compensate for lateral gusts informed by muscle proprioceptive cues from neck twist. The neck muscles not only stabilize the lovebirds' visual and inertial head orientations by compensating low-frequency body maneuvers, but also attenuate faster 3D wingbeat-induced perturbations. This head stabilization enables the vestibular system to sense the direction of gravity. Apparently, the visual horizon can be replaced by a gravitational horizon to inform the observed horizontal gust compensation maneuvers in the dark. Our scaling analysis shows how this minimal sensorimotor solution scales favorably for bigger birds, offering local wind angle feedback within a wingbeat. The way lovebirds glean wind orientation may thus inform minimal control algorithms that enable aerial robots to maneuver in similar windy and dark environments.
Address Mechanical Engineering Department, Stanford University, Stanford, CA 94305; danquinn@virginia.edu dlentink@stanford.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:31289235 Approved no
Call Number GFZ @ kyba @ Serial 2577
Permanent link to this record
 

 
Author Rea, M.S.; Nagare, R.; Figueiro, M.G.
Title Predictions of melatonin suppression during the early biological night and their implications for residential light exposures prior to sleeping Type Journal Article
Year 2020 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 10 Issue 1 Pages (down) 14114
Keywords Human Health
Abstract The magnitude of nocturnal melatonin suppression depends upon the spectrum, amount, and duration of light exposure. The functional relationship between melatonin suppression and the light spectrum and amount have been previously described. Only one duration-dependent parameter was needed to extend this functional relationship to predict nocturnal melatonin suppression during the early biological night from a variety of published studies. Those predictions suggest that ambient lighting commonly found in North American homes will not suppress melatonin for durations up to 3 h, whereas extended use of self-luminous displays in the home prior to sleep can.
Address Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, Troy, NY, 12180-3352, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:32839489; PMCID:PMC7445277 Approved no
Call Number GFZ @ kyba @ Serial 3098
Permanent link to this record
 

 
Author Yao, Q.; Wang, H.; Dai, Q.; Shi, F.
Title Quantification assessment of light pollution of façade lighting display in Shenzhen, China Type Journal Article
Year 2020 Publication Optics Express Abbreviated Journal Opt. Express
Volume 28 Issue 9 Pages (down) 14100
Keywords Lighting; Instrumentation
Abstract In this work, we investigated 39 façade lighting displays, all of which consisted of tri-chromatic light sources, namely blue-, green-, and red- light units, in Shenzhen, China. We extracted the spectral characteristics of the mean peak wavelength/full-width at half-maximum,and proposed universal spectral models. We further established the ‘chromaticity-performance’ relation to quantitatively assess the impact of light pollution on typical species based on corresponding action spectra. The findings provide a low-cost, fast and precise approach to assess light pollution of complicated light environment, and may help reduce energy waste and adverse environmental consequences associated with light pollution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2893
Permanent link to this record
 

 
Author Orbach, D.N.; Fenton, B.
Title Vision impairs the abilities of bats to avoid colliding with stationary obstacles Type Journal Article
Year 2010 Publication PloS one Abbreviated Journal PLoS One
Volume 5 Issue 11 Pages (down) e13912
Keywords Analysis of Variance; Animals; Chiroptera/*physiology; Cyclonic Storms; Echolocation/*physiology; Female; Flight, Animal/*physiology; Light; Male; Space Perception/physiology/radiation effects; Vision, Ocular/*physiology/radiation effects; Vocalization, Animal/physiology
Abstract BACKGROUND: Free-flying insectivorous bats occasionally collide with stationary objects they should easily detect by echolocation and avoid. Collisions often occur with lighted objects, suggesting ambient light may deleteriously affect obstacle avoidance capabilities. We tested the hypothesis that free-flying bats may orient by vision when they collide with some obstacles. We additionally tested whether acoustic distractions, such as “distress calls” of other bats, contributed to probabilities of collision. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the role of visual cues in the collisions of free-flying little brown bats (Myotis lucifugus) with stationary objects, we set up obstacles in an area of high bat traffic during swarming. We used combinations of light intensities and visually dissimilar obstacles to verify that bats orient by vision. In early August, bats collided more often in the light than the dark, and probabilities of collision varied with the visibility of obstacles. However, the probabilities of collisions altered in mid to late August, coincident with the start of behavioural, hormonal, and physiological changes occurring during swarming and mating. Distress calls did not distract bats and increase the incidence of collisions. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that visual cues are more important for free-flying bats than previously recognized, suggesting integration of multi-sensory modalities during orientation. Furthermore, our study highlights differences between responses of captive and wild bats, indicating a need for more field experiments.
Address Department of Biology, University of Western Ontario, London, Ontario, Canada. dnorbach@gmail.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:21085481; PMCID:PMC2976695 Approved no
Call Number IDA @ john @ Serial 96
Permanent link to this record