|   | 
Details
   web
Records
Author Xue, X.; Lin, Y.; Zheng, Q.; Wang, K.; Zhang, J.; Deng, J.; Abubakar, G.A.; Gan, M.
Title Mapping the fine-scale spatial pattern of artificial light pollution at night in urban environments from the perspective of bird habitats Type Journal Article
Year 2019 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ
Volume 702 Issue Pages (down) 134725
Keywords Remote Sensing; Animals; ALAN pollution; Circuitscape; Land cover; Nighttime light image; Urban ecology
Abstract The increase in artificial light at night (ALAN) is a global concern, while the pattern of ALAN pollution inside urban areas has not yet been fully explored. To fill this gap, we developed a novel method to map fine-scale ALAN pollution patterns in urban bird habitats using high spatial resolution ALAN satellite data. First, an ALAN pollution map was derived from JL1-3B satellite images. Then, the core habitat nodes (CHNs) representing the main habitats for urban birds to inhabit were identified from the land cover map, which was produced using Gaofen2 (GF2) data, and the high probability corridors (HPCs), indicating high connectivity paths, were derived from Circuitscape software. Finally, the ALAN patterns in the CHNs and HPCs were analysed, and the mismatch index was proposed to evaluate the trade-off between human activity ALAN demands and ALAN supply for the protection of urban birds. The results demonstrated that 115 woodland patches covering 4149.0ha were selected as CHNs, and most of the CHNs were large urban parks or scenic spots located in the urban fringe. The 2923 modelled HPCs occupying 1179.2ha were small remaining vegetation patches and vegetated corridors along the major transport arteries. The differences in the ALAN pollution patterns between CHNs and HPCs were mainly determined by the characteristics of the green space patches and the light source types. The polluted regions in the CHNs were clustered in a few regions that suffered from concentrated and intensive ALAN, while most of the CHNs remained unaffected. In contrast, the 727 HPCs were mainly polluted by street lighting was scattered and widely distributed, resulting a more varying influence to birds than that in the CHNs. Relating patterns of the ALAN to bird habitats and connectivity provides meaningful information for comprehensive planning to alleviate the disruptive effects of ALAN pollution.
Address College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China. Electronic address: ganmuye@zju.edu.cn
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes PMID:31734607 Approved no
Call Number GFZ @ kyba @ Serial 2765
Permanent link to this record
 

 
Author Cohen, J.H.; Berge, J.; Moline, M.A.; Sorensen, A.J.; Last, K.; Falk-Petersen, S.; Renaud, P.E.; Leu, E.S.; Grenvald, J.; Cottier, F.; Cronin, H.; Menze, S.; Norgren, P.; Varpe, O.; Daase, M.; Darnis, G.; Johnsen, G.
Title Is Ambient Light during the High Arctic Polar Night Sufficient to Act as a Visual Cue for Zooplankton? Type Journal Article
Year 2015 Publication PloS one Abbreviated Journal PLoS One
Volume 10 Issue 6 Pages (down) e0126247
Keywords Animals
Abstract The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79 degrees N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1-1.5 x 10-5 mumol photons m-2 s-1 (400-700 nm) in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm) being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20-30m depth during the Arctic polar night.
Address The University Centre in Svalbard, 9171, Longyearbyen, Norway; Applied Underwater Robotics Lab, Depts of Biology and Marine Technology, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:26039111; PMCID:PMC4454649 Approved no
Call Number LoNNe @ kyba @ Serial 1277
Permanent link to this record
 

 
Author Kocifaj, M.; Solano Lamphar, H.A.
Title Angular Emission Function of a City and Skyglow Modeling: A Critical Perspective Type Journal Article
Year 2016 Publication Publications of the Astronomical Society of the Pacific Abbreviated Journal Pasp
Volume 128 Issue 970 Pages (down) 124001
Keywords Skyglow
Abstract The radiative transfer equation (RTE) is a common approach to solving the transfer of electromagnetic energy in heterogeneous disperse media, such as atmospheric environment. One-dimensional RTE is a linear boundary value problem that is well suited to plane-parallel atmosphere with no diffuse intensity entering the top of the atmosphere. In nighttime regime, the ground-based light sources illuminate the atmosphere at its bottom interface. However, the light-pollution models conventionally use radiant intensity function rather than radiance. This might potentially result in a number of misconceptions. We focused on similarities and fundamental differences between both functions and clarified distinct consequences for the modeling of skyglow from finite-sized and semi-infinite light-emitting flat surfaces. Minimum requirements to be fulfilled by a City Emission Function (CEF) are formulated to ensure a successful solution of standard and inverse problems. It has been shown that the horizon radiance of a flat surface emitting in accordance with Garstang's function (GEF) would exceed any limit, meaning that the GEF is not an appropriate tool to model skyglow from distant sources. We developed two alternative CEFs to remedy this problem through correction of direct upward emissions; the most important strengths of the modified CEFs are detailed in this paper. Numerical experiments on sky luminance under well-posed and ill-posed boundary conditions were made for two extreme uplight fractions (F) and for three discrete distances from the city edge. The errors induced by replacing radiance with radiant intensity function in the RTE are generally low (15%–30%) if F is as large as 0.15, but alteration of the luminance may range over 1–3 orders of magnitude if F approaches zero. In the latter case, the error margin can increase by a factor of 10–100 or even 1000, even if the angular structure of luminance patterns suffers only weak changes. This is why such a shift in luminance magnitudes can be mistakenly interpreted as the effect of inaccurate estimate of lumens per head of the population rather than the effect of cosine distortion due to ill-posed inputs to the RTE. For that reason, a thorough revision (and/or remediation) of theoretical and computational models is suggested.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6280 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1564
Permanent link to this record
 

 
Author Szaz, D.; Horvath, G.; Barta, A.; Robertson, B.A.; Farkas, A.; Egri, A.; Tarjanyi, N.; Racz, G.; Kriska, G.
Title Lamp-Lit Bridges as Dual Light-Traps for the Night-Swarming Mayfly, Ephoron virgo: Interaction of Polarized and Unpolarized Light Pollution Type Journal Article
Year 2015 Publication PloS one Abbreviated Journal PLoS One
Volume 10 Issue 3 Pages (down) e0121194
Keywords Animals
Abstract Ecological photopollution created by artificial night lighting can alter animal behavior and lead to population declines and biodiversity loss. Polarized light pollution is a second type of photopollution that triggers water-seeking insects to ovisposit on smooth and dark man-made objects, because they simulate the polarization signatures of natural water bodies. We document a case study of the interaction of these two forms of photopollution by conducting observations and experiments near a lamp-lit bridge over the river Danube that attracts mass swarms of the mayfly Ephoron virgo away from the river to oviposit on the asphalt road of the bridge. Millions of mayflies swarmed near bridge-lights for two weeks. We found these swarms to be composed of 99% adult females performing their upstream compensatory flight and were attracted upward toward unpolarized bridge-lamp light, and away from the horizontally polarized light trail of the river. Imaging polarimetry confirmed that the asphalt surface of the bridge was strongly and horizontally polarized, providing a supernormal ovipositional cue to Ephoron virgo, while other parts of the bridge were poor polarizers of lamplight. Collectively, we confirm that Ephoron virgo is independently attracted to both unpolarized and polarized light sources, that both types of photopollution are being produced at the bridge, and that spatial patterns of swarming and oviposition are consistent with evolved behaviors being triggered maladaptively by these two types of light pollution. We suggest solutions to bridge and lighting design that should prevent or mitigate the impacts of such scenarios in the future. The detrimental impacts of such scenarios may extend beyond Ephoron virgo.
Address Danube Research Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Budapest, Hungary; Group for Methodology in Biology Teaching, Biological Institute, Eotvos University, Budapest, Hungary
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:25815748 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 1145
Permanent link to this record
 

 
Author Ardavani, O.; Zerefos, S.; Doulos, L.T.
Title Redesigning the exterior lighting as part of the urban landscape: The role of transgenic bioluminescent plants in mediterranean urban and suburban lighting environments Type Journal Article
Year 2020 Publication Journal of Cleaner Production Abbreviated Journal Journal of Cleaner Production
Volume 242 Issue Pages (down) 118477
Keywords Plants; Lighting
Abstract This research discusses the feasibility of replacing or supporting artificial lighting with Transgenic Bioluminescent Plants (TBP), as a means of minimizing light pollution, reducing electrical energy consumption and de-carbonizing urban and suburban outdoor environments, creating sustainable conditions and enriching the quality of life. Until now, no information is given about the light output of any TBPs and the question “Are the TBPs capable of producing the necessary lighting levels for exterior lighting?” is unanswered. For this reason, a new methodology is proposed for selecting and analyzing the lighting output potential of transgenic plants ted for specific climatic conditions. This methodology considers growth and reduction factors, as well as a formulae for estimating the plants’ luminous output by performing light measurements. Results show that transgenic plants in medium growth can emit a median luminous flux of up to 57 lm, a value that can definitely support low lighting requirements when used in large numbers of plants. From the lighting measurements and calculations performed in this research, the light output of the TBPs for a typical road with 5m width was found equal to 2lx. The amount of plants required was 40 at each side of the road for every 30m of streets with P6 road class. The results show that the use of bioluminescent plants can actually contribute to the reduction of energy consumption, concerning only the lighting criterium, thus creating an enormous opportunity for a new state-of- the-art market and research that could potentially minimize CO2 emissions and light pollution, improve urban and suburban microclimate, mitigate the effects of climate change, as well as provide an alternative means of lighting affecting both outdoor lighting design and landscape planning in suburban and urban settings. Moreover, further research should be applied considering also other possible ecological impacts before applying TBPs for exterior lighting applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-6526 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2711
Permanent link to this record