toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Falchi, F.; Cinzano, P.; Duriscoe, D.; Kyba, C.C.M.; Elvidge, C.D.; Baugh, K.; Portnov, B.A.; Rybnikova, N.A.; Furgoni, R. url  doi
openurl 
  Title The new world atlas of artificial night sky brightness Type Journal Article
  Year 2016 Publication Science Advances Abbreviated Journal Science Advances  
  Volume 2 Issue 6 Pages (down) e1600377-e1600377  
  Keywords Skyglow; Conservation; Remote Sensing  
  Abstract Artificial lights raise night sky luminance, creating the most visible effect of light pollution—artificial skyglow. Despite the increasing interest among scientists in fields such as ecology, astronomy, health care, and land-use planning, light pollution lacks a current quantification of its magnitude on a global scale. To overcome this, we present the world atlas of artificial sky luminance, computed with our light pollution propagation software using new high-resolution satellite data and new precision sky brightness measurements. This atlas shows that more than 80% of the world and more than 99% of the U.S. and European populations live under light-polluted skies. The Milky Way is hidden from more than one-third of humanity, including 60% of Europeans and nearly 80% of North Americans. Moreover, 23% of the world’s land surfaces between 75°N and 60°S, 88% of Europe, and almost half of the United States experience light-polluted nights.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1466  
Permanent link to this record
 

 
Author Walch, O.J.; Cochran, A.; Forger, D.B. url  doi
openurl 
  Title A global quantification of “normal” sleep schedules using smartphone data Type Journal Article
  Year 2016 Publication Science Advances Abbreviated Journal Science Advances  
  Volume 2 Issue 5 Pages (down) e1501705-e1501705  
  Keywords Human Health; Sleep; *Circadian Rhythm; smartphone; society  
  Abstract The influence of the circadian clock on sleep scheduling has been studied extensively in the laboratory; however, the effects of society on sleep remain largely unquantified. We show how a smartphone app that we have developed, ENTRAIN, accurately collects data on sleep habits around the world. Through mathematical modeling and statistics, we find that social pressures weaken and/or conceal biological drives in the evening, leading individuals to delay their bedtime and shorten their sleep. A country’s average bedtime, but not average wake time, predicts sleep duration. We further show that mathematical models based on controlled laboratory experiments predict qualitative trends in sunrise, sunset, and light level; however, these effects are attenuated in the real world around bedtime. Additionally, we find that women schedule more sleep than men and that users reporting that they are typically exposed to outdoor light go to sleep earlier and sleep more than those reporting indoor light. Finally, we find that age is the primary determinant of sleep timing, and that age plays an important role in the variability of population-level sleep habits. This work better defines and personalizes “normal” sleep, produces hypotheses for future testing in the laboratory, and suggests important ways to counteract the global sleep crisis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1440  
Permanent link to this record
 

 
Author Moran, D.; Softley, R.; Warrant, E.J. url  doi
openurl 
  Title The energetic cost of vision and the evolution of eyeless Mexican cavefish Type Journal Article
  Year 2015 Publication Science Advances Abbreviated Journal Science Advances  
  Volume 1 Issue 8 Pages (down) e1500363-e1500363  
  Keywords vision; animals  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1264  
Permanent link to this record
 

 
Author Pilorz, V.; Tam, S.K.E.; Hughes, S.; Pothecary, C.A.; Jagannath, A.; Hankins, M.W.; Bannerman, D.M.; Lightman, S.L.; Vyazovskiy, V.V.; Nolan, P.M.; Foster, R.G.; Peirson, S.N. url  doi
openurl 
  Title Melanopsin Regulates Both Sleep-Promoting and Arousal-Promoting Responses to Light Type Journal Article
  Year 2016 Publication PLoS Biology Abbreviated Journal PLoS Biol  
  Volume 14 Issue 6 Pages (down) e1002482  
  Keywords Human health; melanopsin; sleep; circadian rhythm  
  Abstract Light plays a critical role in the regulation of numerous aspects of physiology and behaviour, including the entrainment of circadian rhythms and the regulation of sleep. These responses involve melanopsin (OPN4)-expressing photosensitive retinal ganglion cells (pRGCs) in addition to rods and cones. Nocturnal light exposure in rodents has been shown to result in rapid sleep induction, in which melanopsin plays a key role. However, studies have also shown that light exposure can result in elevated corticosterone, a response that is not compatible with sleep. To investigate these contradictory findings and to dissect the relative contribution of pRGCs and rods/cones, we assessed the effects of light of different wavelengths on behaviourally defined sleep. Here, we show that blue light (470 nm) causes behavioural arousal, elevating corticosterone and delaying sleep onset. By contrast, green light (530 nm) produces rapid sleep induction. Compared to wildtype mice, these responses are altered in melanopsin-deficient mice (Opn4-/-), resulting in enhanced sleep in response to blue light but delayed sleep induction in response to green or white light. We go on to show that blue light evokes higher Fos induction in the SCN compared to the sleep-promoting ventrolateral preoptic area (VLPO), whereas green light produced greater responses in the VLPO. Collectively, our data demonstrates that nocturnal light exposure can have either an arousal- or sleep-promoting effect, and that these responses are melanopsin-mediated via different neural pathways with different spectral sensitivities. These findings raise important questions relating to how artificial light may alter behaviour in both the work and domestic setting.  
  Address Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Oxford Molecular Pathology Institute, Dunn School of Pathology, University of Oxford, Oxford, United Kingdom; stuart.peirson(at)eye.ox.ac.uk (SNP); russell.foster(at)eye.ox.ac.uk (RGF).  
  Corporate Author Thesis  
  Publisher PLOS Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1544-9173 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27276063; PMCID:PMC4898879 Approved no  
  Call Number IDA @ john @ Serial 1490  
Permanent link to this record
 

 
Author van Diepen, H.C.; Foster, R.G.; Meijer, J.H. url  doi
openurl 
  Title A colourful clock Type Journal Article
  Year 2015 Publication PLoS Biology Abbreviated Journal PLoS Biol  
  Volume 13 Issue 5 Pages (down) e1002160  
  Keywords Animals; Commentary; *Circadian Rhythm; suprachiasmatic nuclei; melanopsin; retinal ganglion cells; entrainment; photoperiod  
  Abstract Circadian rhythms are an essential property of life on Earth. In mammals, these rhythms are coordinated by a small set of neurons, located in the suprachiasmatic nuclei (SCN). The environmental light/dark cycle synchronizes (entrains) the SCN via a distinct pathway, originating in a subset of photosensitive retinal ganglion cells (pRGCs) that utilize the photopigment melanopsin (OPN4). The pRGCs are also innervated by rods and cones and, so, are both endogenously and exogenously light sensitive. Accumulating evidence has shown that the circadian system is sensitive to ultraviolet (UV), blue, and green wavelengths of light. However, it was unclear whether colour perception itself can help entrain the SCN. By utilizing both behavioural and electrophysiological recording techniques, Walmsley and colleagues show that multiple photic channels interact and enhance the capacity of the SCN to synchronize to the environmental cycle. Thus, entrainment of the circadian system combines both environmental irradiance and colour information to ensure that internal and external time are appropriately aligned.  
  Address Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University medical School, Leiden, The Netherlands  
  Corporate Author Thesis  
  Publisher PLOS Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1544-9173 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:25996907; PMCID:PMC4440787 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 1183  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: