toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lin, C.-F.; Tsai, T.-Y.; Chen, K.-Y.; Shen, P.-C. url  doi
openurl 
  Title Efficient warm-white lighting using rare-earth-element-free fluorescent materials for saving energy, environment protection and human health Type Journal Article
  Year 2016 Publication RSC Adv. Abbreviated Journal RSC Adv.  
  Volume 6 Issue 113 Pages (down) 111959-111965  
  Keywords Lighting  
  Abstract Solid-state white light emission is important for energy saving, but currently it is mainly based on environmentally unfriendly rare-earth doped phosphors or cadmium-containing quantum dots. Here, we explore an environmentally friendly approach for efficient white light emission based on ZnSe:Mn nanoparticles without rare-earth or cadmium elements. The emission is composed of a broad green-orange spectral band (525–650 nm) with the peak located at 578 nm and the color temperature is low, so it is particularly good for lighting at night to reduce risks to human health. Furthermore, the optimal absorption peak could be designed at 453 nm, which well matches the commercial blue-LED emission wavelength (445–470 nm). A quantum yield up to 84.5% could also be achieved. This rare-earth-element-free material opens up a new avenue for energy-saving, healthy, and environmentally benign lighting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1566  
Permanent link to this record
 

 
Author Li, X.; Ma, R.; Zhang, Q.; Li, D.; Liu, S.; He, T.; Zhao, L. url  doi
openurl 
  Title Anisotropic characteristic of artificial light at night – Systematic investigation with VIIRS DNB multi-temporal observations Type Journal Article
  Year 2019 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume 233 Issue Pages (down) 111357  
  Keywords Remote Sensing; Instrumentation  
  Abstract The released VIIRS DNB nightly images, also known as VIIRS DNB daily nighttime images, provide rich information for time series analysis of global socioeconomic dynamics. Anisotropic characteristic is a possible factor that influences the VIIRS DNB radiance at night and its time series analysis. This study aims to investigate the relationship between viewing angles and VIIRS DNB radiance of Suomi NPP satellite in urban areas. First, twenty-nine points were selected globally to explore the angle variation of Suomi NPP satellite views at night. We found that the variation of the satellite viewing zenith angle (VZA) is consistent (e.g. between 0° and 70°) since the range of VZA is fixed depending on the sensor design, and the range of viewing azimuth angle (VAA) increases with the increase of latitude. Second, thirty points in cities of Beijing, Houston, Los Angeles, Moscow, Quito and Sydney, were used to investigate the angle-radiance relationship. We proposed a zenith-radiance quadratic (ZRQ) model and a zenith-azimuth-radiance binary quadratic (ZARBQ) model to quantify the relationship between satellite viewing angles and artificial light radiance, which has been corrected by removing the moonlight and atmospheric impact from VIIRS DNB radiance products. For all the thirty points, the ZRQ and ZARBQ analysis have averaged R2 of 0.50 and 0.53, respectively, which indicates that the viewing angles are important factors influencing the variation of the artificial light radiance, but extending zenith to zenith-azimuth does not much better explain the variation of the observed artificial light. Importantly, based on the data analysis, we can make the hypothesis that building height may affect the relationship between VZA and artificial light, and cold and hot spot effects are clearly found in tall building areas. These findings are potentially useful to reconstruct more stable time series VIIRS DNB images for socioeconomic applications by removing the angular effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2621  
Permanent link to this record
 

 
Author Rodríguez, A.; Burgan, G.; Dann, P.; Jessop, R.; Negro, J.J.; Chiaradia, A. url  doi
openurl 
  Title Fatal Attraction of Short-Tailed Shearwaters to Artificial Lights Type Journal Article
  Year 2014 Publication PLOS ONE Abbreviated Journal PLOS ONE  
  Volume 9 Issue Pages (down) e110114  
  Keywords  
  Abstract Light pollution is increasing around the world and altering natural nightscapes with potential ecological and evolutionary consequences. A severe ecological perturbation caused by artificial lights is mass mortalities of organisms, including seabird fledglings that are attracted to lights at night on their first flights to the sea. Here, we report on the number of fledging short-tailed shearwaters Ardenna tenuirostris found grounded in evening and morning rescue patrols conducted at Phillip Island, Australia, during a 15-year period (1999–2013). We assessed factors affecting numbers of grounded birds and mortality including date, moon phase, wind direction and speed, number of visitors and holiday periods. We also tested experimentally if birds were attracted to lights by turning the lights off on a section of the road. Of 8871 fledglings found, 39% were dead or dying. This mortality rate was 4–8 times higher than reported elsewhere for other shearwater species, probably because searching for fledglings was part of our systematic rescue effort rather than the opportunistic rescue used elsewhere. Thus, it suggests that light-induced mortality of seabirds is usually underestimated. We rescued more birds (dead and alive) in peak fledging, moonless and windy nights. Mortality increased through the fledging period, in the mornings and with increased traffic on holiday periods. Turning the road lights off decreased the number of grounded birds (dead and alive). While moon, wind and time are uncontrolled natural constraints, we demonstrated that reduction of light pollution and better traffic management can mitigate artificial light-induced mortality.  
  Address Animals; light pollution; ecology; shearwater; short-tailed shearwaters; Ardenna tenuirostris; Phillip Island; Australia; mortality; birds  
  Corporate Author Thesis  
  Publisher PLOS Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 678  
Permanent link to this record
 

 
Author Pu, G.; Zeng, D.; Mo, L.; Liao, J.; Chen, X.; Qiu, S.; Lv, Y. url  doi
openurl 
  Title Artificial light at night alter the impact of arsenic on microbial decomposers and leaf litter decomposition in streams Type Journal Article
  Year 2019 Publication Ecotoxicology and Environmental Safety Abbreviated Journal Ecotoxicol Environ Saf  
  Volume in press Issue Pages (down) 110014  
  Keywords Ecology; Microbes; Fungal communities and biodiversity; Illumina sequencing; Light pollution; Litter decomposition; Microbiological oxidation  
  Abstract Artificial light at night (ALAN, also known as light pollution) has been proved to be a contributor to environmental change and a biodiversity threat worldwide, yet little is known about its potential interaction with different metal pollutants, such as arsenic (As), one of the largest threats to aquatic ecosystems. To narrow this gap, an indoor microcosm study was performed using an ALAN simulation device to examine whether ALAN exposure altered the impact of arsenic on plant litter decomposition and its associated fungi. Results revealed that microbial decomposers involved in the conversion of As(III) to As(V), and ALAN exposure enhanced this effect; ALAN or arsenic only exposure altered fungal community composition and the correlations between fungi species, as well as stimulated or inhibited litter decomposition, respectively. The negative effects of arsenic on the decomposition of Pterocarya stenoptera leaf litter was alleviated by ALAN resulting in the enhanced photodegradation of leaf litter lignin and microbiological oxidation of As(III) to As(V), the increased microbial biomass and CBH activity, as well as the enhanced correlations between CBH and litter decomposition rate. Overall, results expand our understanding of ALAN on environment and highlight the contribution of ALAN to the toxicity of arsenic in aquatic ecosystems.  
  Address School of Pharmacy and Biological Sciences, Weifang Medical University, Weifang, 261053, China. Electronic address: njandgl@163.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0147-6513 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31810590 Approved no  
  Call Number GFZ @ kyba @ Serial 2777  
Permanent link to this record
 

 
Author Falchi, F.; Furgoni, R.; Gallaway, T.A.; Rybnikova, N.A.; Portnov, B.A.; Baugh, K.; Cinzano, P.; Elvidge, C.D. url  doi
openurl 
  Title Light pollution in USA and Europe: The good, the bad and the ugly Type Journal Article
  Year 2019 Publication Journal of Environmental Management Abbreviated Journal Journal of Environmental Management  
  Volume 248 Issue Pages (down) 109227  
  Keywords  
  Abstract Light pollution is a worldwide problem that has a range of adverse effects on human health and natural eco-systems. Using data from the New World Atlas of Artificial Night Sky Brightness, VIIRS-recorded radiance and Gross Domestic Product (GDP) data, we compared light pollution levels, and the light flux to the population size and GDP at the State and County levels in the USA and at Regional (NUTS2) and Province (NUTS3) levels inEurope. We found 6800-fold differences between the most and least polluted regions in Europe, 120-fold differences in their light flux per capita, and 267-fold differences influx per GDP unit. Yet, we found even greater differences between US counties: 200,000-fold differences in sky pollution, 16,000-fold differences in light flux per capita, and 40,000-fold differences in light flux per GDP unit. These findings may inform policy-makers, helping to reduce energy waste and adverse environmental, cultural and health consequences associated with light pollution.  
  Address STIL – Istituto di Scienza e Tecnologia dell'Inquinamento Luminoso, Light Pollution Science and Technology Institute, Thiene, Italy; Italy. falchi@lightpollution.it(at)istil.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2593  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: