|   | 
Details
   web
Records
Author Cisse, Y.M.; Russart, K.L.G.; Nelson, R.J.
Title Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity Type Journal Article
Year 2017 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 7 Issue Pages (down) 45497
Keywords Animals
Abstract Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to either dark nights (DARK) or dLAN (~5 lux) for 9 weeks, then paired in full factorial design, mated, and thereafter housed under dark nights. Offspring were gestated and reared in dark nights, then tested as adults for cell-mediated and humoral immunity. Maternal exposure to dLAN dampened delayed type hypersensitivity (DTH) responses in male offspring. Maternal and paternal exposure to dLAN reduced DTH responses in female offspring. IgG antibodies to a novel antigen were elevated in offspring of dams exposed to dLAN. Paternal exposure to dLAN decreased splenic endocrine receptor expression and global methylation in a parental sex-specific manner. Together, these data suggest that exposure to dLAN has transgenerational effects on endocrine-immune function that may be mediated by global alterations in the epigenetic landscape of immune tissues.
Address Department of Neuroscience, Neuroscience Research Institute, Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:28361901 Approved no
Call Number LoNNe @ kyba @ Serial 1647
Permanent link to this record
 

 
Author Skeldon, A.C.; Phillips, A.J.K.; Dijk, D.-J.
Title The effects of self-selected light-dark cycles and social constraints on human sleep and circadian timing: a modeling approach Type Journal Article
Year 2017 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 7 Issue Pages (down) 45158
Keywords human health, lighting
Abstract Why do we go to sleep late and struggle to wake up on time? Historically, light-dark cycles were dictated by the solar day, but now humans can extend light exposure by switching on artificial lights. We use a mathematical model incorporating effects of light, circadian rhythmicity and sleep homeostasis to provide a quantitative theoretical framework to understand effects of modern patterns of light consumption on the human circadian system. The model shows that without artificial light humans wakeup at dawn. Artificial light delays circadian rhythmicity and preferred sleep timing and compromises synchronisation to the solar day when wake-times are not enforced. When wake-times are enforced by social constraints, such as work or school, artificial light induces a mismatch between sleep timing and circadian rhythmicity ('social jet-lag'). The model implies that developmental changes in sleep homeostasis and circadian amplitude make adolescents particularly sensitive to effects of light consumption. The model predicts that ameliorating social jet-lag is more effectively achieved by reducing evening light consumption than by delaying social constraints, particularly in individuals with slow circadian clocks or when imposed wake-times occur after sunrise. These theory-informed predictions may aid design of interventions to prevent and treat circadian rhythm-sleep disorders and social jet-lag.
Address University of Surrey, Surrey Sleep Research Centre, Guildford, GU2 7XP, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:28345624 Approved no
Call Number SU @ spitschan @ Serial 1638
Permanent link to this record
 

 
Author Tamir, R.; Lerner, A.; Haspel, C.; Dubinsky, Z.; Iluz, D.
Title The spectral and spatial distribution of light pollution in the waters of the northern Gulf of Aqaba (Eilat) Type Journal Article
Year 2017 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 7 Issue Pages (down) 42329
Keywords Measurement; Instrumentation; Remote Sensing
Abstract The urbanization of the shores of the Gulf of Aqaba has exposed the marine environment there, including unique fringing coral reefs, to strong anthropogenic light sources. Here we present the first in situ measurements of artificial nighttime light under water in such an ecosystem, with irradiance measured in 12 wavelength bands, at 19 measurement stations spread over 44 square km, and at 30 depths down to 30-m depth. At 1-m depth, we find downwelling irradiance values that vary from 4.6 x 10(-4) muW cm(-2) nm(-1) 500 m from the city to 1 x 10(-6) muW cm(-2) nm(-1) in the center of the gulf (9.5 km from the city) in the yellow channel (589-nm wavelength) and from 1.3 x 10(-4) muW cm(-2 )nm(-1) to 4.3 x 10(-5) muW cm(-2) nm(-1) in the blue channel (443-nm wavelength). Down to 10-m depth, we find downwelling irradiance values that vary from 1 x 10(-6) muW cm(-2 )nm(-1) to 4.6 x 10(-4) muW cm(-2) nm(-1) in the yellow channel and from 2.6 x 10(-5) muW cm(-2) nm(-1) to 1.3 x 10(-4) muW cm(-2) nm(-1) in the blue channel, and we even detected a signal at 30-m depth. This irradiance could influence such biological processes as the tuning of circadian clocks, the synchronization of coral spawning, recruitment and competition, vertical migration of demersal plankton, feeding patterns, and prey/predator visual interactions.
Address School of Agriculture and Environmental Studies, Beit Berl College, Kfar Saba, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:28186138; PMCID:PMC5301253 Approved no
Call Number GFZ @ kyba @ Serial 1861
Permanent link to this record
 

 
Author Cho, E.; Oh, J.H.; Lee, E.; Do, Y.R.; Kim, E.Y.
Title Cycles of circadian illuminance are sufficient to entrain and maintain circadian locomotor rhythms in Drosophila Type Journal Article
Year 2016 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 6 Issue Pages (down) 37784
Keywords Animals
Abstract Light at night disrupts the circadian clock and causes serious health problems in the modern world. Here, we show that newly developed four-package light-emitting diodes (LEDs) can provide harmless lighting at night. To quantify the effects of light on the circadian clock, we employed the concept of circadian illuminance (CIL). CIL represents the amount of light weighted toward the wavelengths to which the circadian clock is most sensitive, whereas visual illuminance (VIL) represents the total amount of visible light. Exposure to 12 h:12 h cycles of white LED light with high and low CIL values but a constant VIL value (conditions hereafter referred to as CH/CL) can entrain behavioral and molecular circadian rhythms in flies. Moreover, flies re-entrain to phase shift in the CH/CL cycle. Core-clock proteins are required for the rhythmic behaviors seen with this LED lighting scheme. Taken together, this study provides a guide for designing healthful white LED lights for use at night, and proposes the use of the CIL value for estimating the harmful effects of any light source on organismal health.
Address Neuroscience Graduate Program, BK21 Plus Program, Department of Biomedical Sciences, Ajou University School of Medicine, 164 Worldcup-ro, Suwon, 16499, Republic of Korea
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:27883065; PMCID:PMC5121609 Approved no
Call Number LoNNe @ kyba @ Serial 1565
Permanent link to this record
 

 
Author Summa, K.C.; Vitaterna, M.H.; Turek, F.W.
Title Environmental perturbation of the circadian clock disrupts pregnancy in the mouse Type Journal Article
Year 2012 Publication PloS one Abbreviated Journal PLoS One
Volume 7 Issue 5 Pages (down) e37668
Keywords Animals; Circadian Rhythm/*physiology; *Environment; Female; Locomotion/physiology; Mice; Mice, Inbred C57BL; Photoperiod; Pregnancy; Pregnancy Outcome; Reproduction/*physiology
Abstract BACKGROUND: The circadian clock has been linked to reproduction at many levels in mammals. Epidemiological studies of female shift workers have reported increased rates of reproductive abnormalities and adverse pregnancy outcomes, although whether the cause is circadian disruption or another factor associated with shift work is unknown. Here we test whether environmental disruption of circadian rhythms, using repeated shifts of the light:dark (LD) cycle, adversely affects reproductive success in mice. METHODOLOGY/PRINCIPAL FINDINGS: Young adult female C57BL/6J (B6) mice were paired with B6 males until copulation was verified by visual identification of vaginal plug formation. Females were then randomly assigned to one of three groups: control, phase-delay or phase-advance. Controls remained on a constant 12-hr light:12-hr dark cycle, whereas phase-delayed and phase-advanced mice were subjected to 6-hr delays or advances in the LD cycle every 5-6 days, respectively. The number of copulations resulting in term pregnancies was determined. Control females had a full-term pregnancy success rate of 90% (11/12), which fell to 50% (9/18; p<0.1) in the phase-delay group and 22% (4/18; p<0.01) in the phase-advance group. CONCLUSIONS/SIGNIFICANCE: Repeated shifting of the LD cycle, which disrupts endogenous circadian timekeeping, dramatically reduces pregnancy success in mice. Advances of the LD cycle have a greater negative impact on pregnancy outcomes and, in non-pregnant female mice, require longer for circadian re-entrainment, suggesting that the magnitude or duration of circadian misalignment may be related to the severity of the adverse impact on pregnancy. These results explicitly link disruptions of circadian entrainment to adverse pregnancy outcomes in mammals, which may have important implications for the reproductive health of female shift workers, women with circadian rhythm sleep disorders and/or women with disturbed circadian rhythms for other reasons.
Address Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:22649550; PMCID:PMC3359308 Approved no
Call Number IDA @ john @ Serial 92
Permanent link to this record