|   | 
Details
   web
Records
Author Kim, H.-S.; Lee, Y.H.
Title Correlation Analysis of Image Reproduction and Display Color Temperature Change to Prevent Sleep Disorder Type Journal Article
Year 2019 Publication IEEE Access Abbreviated Journal IEEE Access
Volume 7 Issue Pages (down) 59091-59099
Keywords Human Health
Abstract This paper aims to determine the effect of the smartphone warm color temperature functionthat relieves display’s HEVL (high-energy visible light and short wavelength series blue light), which isknown to cause suppression of melatonin secretion on actual image reproduction quality. For this study,the author of this paper measured the display based on the color difference in 26 sampling colors. It was foundthat for correlated color temperature (CCT) of 4000 K or less, the color difference rose sharply, centeringaround red and green. In hardware or software, a low CCT was realized by reducing the output centered onblue and green, but in actual color quality, a problem arose in the red and green channels. As far as tonegradation is concerned,1E increased for CCT of 4500 K or less while the accuracy of the shadow detail wasreduced. With regard to color gamut reproduction, for the coverage of sRGB color space, the color gamutbecame narrow for CCT of 5500 K or less, and for volume, the color gamut became narrow sharply for CCTof 4000 K. It was found that the maximum CCT changes to prevent a decline in melatonin secretion at alevel of minimizing the degradation of image quality is 4000–4500 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-3536 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2500
Permanent link to this record
 

 
Author Narendra, A.; Reid, S.F.; Raderschall, C.A.
Title Navigational efficiency of nocturnal Myrmecia ants suffers at low light levels Type Journal Article
Year 2013 Publication PloS one Abbreviated Journal PLoS One
Volume 8 Issue 3 Pages (down) e58801
Keywords Adaptation, Biological/*physiology; Animals; Ants/*physiology; Australian Capital Territory; *Cues; Geographic Information Systems; Homing Behavior/*physiology; *Light; Locomotion/*physiology; Orientation/*physiology; insects
Abstract Insects face the challenge of navigating to specific goals in both bright sun-lit and dim-lit environments. Both diurnal and nocturnal insects use quite similar navigation strategies. This is despite the signal-to-noise ratio of the navigational cues being poor at low light conditions. To better understand the evolution of nocturnal life, we investigated the navigational efficiency of a nocturnal ant, Myrmecia pyriformis, at different light levels. Workers of M. pyriformis leave the nest individually in a narrow light-window in the evening twilight to forage on nest-specific Eucalyptus trees. The majority of foragers return to the nest in the morning twilight, while few attempt to return to the nest throughout the night. We found that as light levels dropped, ants paused for longer, walked more slowly, the success in finding the nest reduced and their paths became less straight. We found that in both bright and dark conditions ants relied predominantly on visual landmark information for navigation and that landmark guidance became less reliable at low light conditions. It is perhaps due to the poor navigational efficiency at low light levels that the majority of foragers restrict navigational tasks to the twilight periods, where sufficient navigational information is still available.
Address ARC Centre of Excellence in Vision Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia. ajay.narendra@anu.edu.au
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:23484052; PMCID:PMC3590162 Approved no
Call Number IDA @ john @ Serial 117
Permanent link to this record
 

 
Author Solano Lamphar, H.A.; Kocifaj, M.
Title Light pollution in ultraviolet and visible spectrum: effect on different visual perceptions Type Journal Article
Year 2013 Publication PloS one Abbreviated Journal PLoS One
Volume 8 Issue 2 Pages (down) e56563
Keywords Lighting; Animals; *Environmental Pollution; Humans; Insects; Light; Lighting/*adverse effects; Models, Theoretical; *Visual Perception
Abstract In general terms, lighting research has been focused in the development of artificial light with the purpose of saving energy and having more durable lamps. However, the consequences that artificial night lighting could bring to the human being and living organisms have become an important issue recently. Light pollution represents a significant problem to both the environment and human health causing a disruption of biological rhythms related not only to the visible spectrum, but also to other parts of the electromagnetic spectrum. Since the lamps emit across a wide range of the electromagnetic spectrum, all photobiological species may be exposed to another type of light pollution. By comparing five different lamps, the present study attempts to evaluate UV radiative fluxes relative to what humans and two species of insects perceive as sky glow level. We have analyzed three atmospheric situations: clear sky, overcast sky and evolving precipitable water content. One important finding suggests that when a constant illuminance of urban spaces has to be guaranteed the sky glow from the low pressure sodium lamps has the most significant effect to the visual perception of the insects tested. But having the fixed number of luminaires the situation changes and the low pressure sodium lamp would be the best choice for all three species. The sky glow effects can be interpreted correctly only if the lamp types and the required amount of scotopic luxes at the ground are taken into account simultaneously. If these two factors are combined properly, then the ecological consequences of sky glow can be partly reduced. The results of this research may be equally useful for lighting engineers, architects, biologists and researchers who are studying the effects of sky glow on humans and biodiversity.
Address ICA, Slovak Academy of Sciences, Bratislava, Slovak Republic. lamphar@gmail.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:23441205; PMCID:PMC3575508 Approved no
Call Number LoNNe @ schroer @ Serial 578
Permanent link to this record
 

 
Author Zhou, Y.; Smith, S.J.; Zhao, K.; Imhoff, M.; Thomson, A.; Bond-Lamberty, B.; Asrar, G.R.; Zhang, X.; He, C.; Elvidge, C.D.
Title A global map of urban extent from nightlights Type Journal Article
Year 2015 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 10 Issue 5 Pages (down) 054011
Keywords Remote Sensing
Abstract Urbanization, a major driver of global change, profoundly impacts our physical and social world, for example, altering not just water and carbon cycling, biodiversity, and climate, but also demography, public health, and economy. Understanding these consequences for better scientific insights and effective decision-making unarguably requires accurate information on urban extent and its spatial distributions. We developed a method to map the urban extent from the defense meteorological satellite program/operational linescan system nighttime stable-light data at the global level and created a new global 1 km urban extent map for the year 2000. Our map shows that globally, urban is about 0.5% of total land area but ranges widely at the regional level, from 0.1% in Oceania to 2.3% in Europe. At the country level, urbanized land varies from about 0.01 to 10%, but is lower than 1% for most (70%) countries. Urbanization follows land mass distribution, as anticipated, with the highest concentration between 30° N and 45° N latitude and the largest longitudinal peak around 80° W. Based on a sensitivity analysis and comparison with other global urban area products, we found that our global product of urban areas provides a reliable estimate of global urban areas and offers the potential for producing a time-series of urban area maps for temporal dynamics analyses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 1174
Permanent link to this record
 

 
Author Garcia-Saenz, A.; Sanchez de Miguel, A.; Espinosa, A.; Valentin, A.; Aragones, N.; Llorca, J.; Amiano, P.; Martin Sanchez, V.; Guevara, M.; Capelo, R.; Tardon, A.; Peiro-Perez, R.; Jimenez-Moleon, J.J.; Roca-Barcelo, A.; Perez-Gomez, B.; Dierssen-Sotos, T.; Fernandez-Villa, T.; Moreno-Iribas, C.; Moreno, V.; Garcia-Perez, J.; Castano-Vinyals, G.; Pollan, M.; Aube, M.; Kogevinas, M.
Title Evaluating the Association between Artificial Light-at-Night Exposure and Breast and Prostate Cancer Risk in Spain (MCC-Spain Study) Type Journal Article
Year 2018 Publication Environmental Health Perspectives Abbreviated Journal Environ Health Perspect
Volume 126 Issue 4 Pages (down) 047011
Keywords Human Health; Remote Sensing; Adult; Aged; Aged, 80 and over; Breast Neoplasms/*epidemiology/etiology; Case-Control Studies; Circadian Rhythm; Female; Humans; Incidence; Light/*adverse effects; Lighting/*adverse effects; Male; Middle Aged; Prostatic Neoplasms/*epidemiology/etiology; Risk Factors; Spain/epidemiology; Young Adult
Abstract BACKGROUND: Night shift work, exposure to light at night (ALAN) and circadian disruption may increase the risk of hormone-dependent cancers. OBJECTIVES: We evaluated the association of exposure to ALAN during sleeping time with breast and prostate cancer in a population based multicase-control study (MCC-Spain), among subjects who had never worked at night. We evaluated chronotype, a characteristic that may relate to adaptation to light at night. METHODS: We enrolled 1,219 breast cancer cases, 1,385 female controls, 623 prostate cancer cases, and 879 male controls from 11 Spanish regions in 2008-2013. Indoor ALAN information was obtained through questionnaires. Outdoor ALAN was analyzed using images from the International Space Station (ISS) available for Barcelona and Madrid for 2012-2013, including data of remotely sensed upward light intensity and blue light spectrum information for each geocoded longest residence of each MCC-Spain subject. RESULTS: Among Barcelona and Madrid participants with information on both indoor and outdoor ALAN, exposure to outdoor ALAN in the blue light spectrum was associated with breast cancer [adjusted odds ratio (OR) for highest vs. lowest tertile, OR=1.47; 95% CI: 1.00, 2.17] and prostate cancer (OR=2.05; 95% CI: 1.38, 3.03). In contrast, those exposed to the highest versus lowest intensity of outdoor ALAN were more likely to be controls than cases, particularly for prostate cancer. Compared with those who reported sleeping in total darkness, men who slept in “quite illuminated” bedrooms had a higher risk of prostate cancer (OR=2.79; 95% CI: 1.55, 5.04), whereas women had a slightly lower risk of breast cancer (OR=0.77; 95% CI: 0.39, 1.51). CONCLUSION: Both prostate and breast cancer were associated with high estimated exposure to outdoor ALAN in the blue-enriched light spectrum. https://doi.org/10.1289/EHP1837.
Address IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0091-6765 ISBN Medium
Area Expedition Conference
Notes PMID:29687979; PMCID:PMC6071739 Approved no
Call Number GFZ @ kyba @ Serial 3044
Permanent link to this record