toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Miranda-Anaya, M.; Luna-Moreno, D.; Carmona-Castro, A.; Dí­az-Muñoz, M. url  doi
openurl 
  Title Differences in Photic Entrainment of Circadian Locomotor Activity Between Lean and Obese Volcano Mice (Neotomodon alstoni) Type Journal Article
  Year 2017 Publication Journal of Circadian Rhythms Abbreviated Journal  
  Volume 15 Issue 1 Pages (up)  
  Keywords Animals  
  Abstract Obesity is a growing problem worldwide with a clear impact on health status. It is also a condition that negatively affects circadian rhythms. When the mouse Neotomodon alstoni is fed a regular rodent chow, some individuals develop obesity, representing an opportunity to compare the effects of spontaneous obesity upon the circadian organization in this species with that observed in other rodents with induced obesity. We report differences in the free running circadian locomotor activity rhythm and in the effects of light pulses between lean and obese mice. Also, the photo-induced expression of the c-Fos protein and vasoactive intestinal peptide (VIP) in the suprachiasmatic nucleus (SCN) were examined at circadian time (CT) 14 and 22. We show that obese mice have a larger dispersion of the period of circadian locomotor rhythm in constant darkness. Photic induced phase shifts are nearly 50% shorter at CT 14, and 50% larger at CT 22 than in lean mice. The photoinduction of VIP in the SCN at CT 22 was larger in obese mice, which may be related to the differences observed in photic phase shifting. Our work indicates that the obesity in Neotomodon has effects on the neural mechanisms that regulate the circadian system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1740-3391 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1630  
Permanent link to this record
 

 
Author Keshet-Sitton, A.; Or-Chen, K.; Huber, E.; Haim, A. url  doi
openurl 
  Title Illuminating a Risk for Breast Cancer: A Preliminary Ecological Study on the Association Between Streetlight and Breast Cancer Type Journal Article
  Year 2016 Publication Integrative Cancer Therapies Abbreviated Journal Integr Cancer Ther  
  Volume Issue Pages (up)  
  Keywords Human Health  
  Abstract Artificial light at night (ALAN) for elongating photophase is a new source of pollution. We examined the association between measured ALAN levels and breast cancer (BC) standard morbidity ratio (SMR) at a statistical area (SA) level in an urban environment. Sample size consisted of 266 new BC cases ages 35-74. Light measurements (lux) were performed in 11 SAs. A new calculated variable of morbidity per SA size (SMR35-74/km2) was correlated with the light variables per road length, using Pearson correlations (P < .05, 1-tailed). Looking for a light threshold, we correlated percentage of light points above SA light intensity median with SMR35-74/km2 SMR35-74/km2 was significantly and positively strongly correlated with mean, median, and standard-deviation (SD) light intensity per road length (r = .79, P < .01, R2 = .63; r = .77, P < .01, R2 = .59; and r = .79, P < .01, R2 = .63). Light threshold results demonstrate a marginally significant positive moderate correlation between percentage of points above 16.3 lux and SMR35-74/km2 (r = .48, P < .07; R2 = .23). In situ results support the hypothesis that outdoor ALAN illumination is associated with a higher BC-SMR in a specific area and age group. Moreover, we suggest an outdoor light threshold of approximately 16 lux as the minimal intensity to affect melatonin levels and BC morbidity. To the best of our knowledge, our attempt is the first to use this method and show such association between streetlight intensity and BC morbidity and therefore should be further developed.  
  Address University of Haifa, Haifa, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1534-7354 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27899698 Approved no  
  Call Number LoNNe @ kyba @ Serial 1635  
Permanent link to this record
 

 
Author Kwak, M.J.; Lee, S.H.; Khaine, I.; Je, S.M.; Lee, T.Y.; You, H.N.; Lee, H.K.; Jang, J.H.; Kim, I.; Woo, S.Y. url  doi
openurl 
  Title Stomatal movements depend on interactions between external night light cue and internal signals activated by rhythmic starch turnover and abscisic acid (ABA) levels at dawn and dusk Type Journal Article
  Year 2017 Publication Acta Physiologiae Plantarum Abbreviated Journal Acta Physiol Plant  
  Volume 39 Issue 8 Pages (up)  
  Keywords Plants  
  Abstract Yellow poplar (Liriodendron tulipifera L.) is a widespread hardwood tree of great ecological and economic value. Light pollution caused by excessive and indiscriminate exposure to artificial night light has emerged as a new risk factor due to its adverse effects related to energy waste, sleep disorders, anthropogenic habitat disturbance, and perceptual disorder of daily and seasonal rhythms in wildlife. However, it remains unknown how associations between artificial night light and stomatal behaviors controlled by internal signals are established. After continuous exposure to artificial light at night over 3 years, leaves in the experimental set-up were measured for stomatal movements, starch turnover, endogenous abscisic acid (ABA) levels, and chloroplast ultrastructure during the growing season. Yellow poplar showed dynamic changes in stomatal movement, starch turnover, and endogenous ABA levels in response to day/artificial night light cycle, resulting in reduction of circadian phase-shifting capacity at both dusk and dawn and normal chloroplast development as compared with natural night. Nighttime light exposure may act as a major factor for disorder of circadian and circannual rhythms as well as physiological and ultrastructural repressor in plants, via a modification of the perceived photoperiod. Our study suggests that these dynamic responses can provide advantageous insights that complement the current knowledge on light pollution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0137-5881 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1682  
Permanent link to this record
 

 
Author Spoelstra, K.; van Grunsven, R.H.A.; Ramakers, J.J.C.; Ferguson, K.B.; Raap, T.; Donners, M.; Veenendaal, E.M.; Visser, M.E. url  doi
openurl 
  Title Response of bats to light with different spectra: light-shy and agile bat presence is affected by white and green, but not red light Type Journal Article
  Year 2017 Publication Proceedings. Biological Sciences Abbreviated Journal Proc Biol Sci  
  Volume 284 Issue 1855 Pages (up)  
  Keywords Animals  
  Abstract Artificial light at night has shown a remarkable increase over the past decades. Effects are reported for many species groups, and include changes in presence, behaviour, physiology and life-history traits. Among these, bats are strongly affected, and how bat species react to light is likely to vary with light colour. Different spectra may therefore be applied to reduce negative impacts. We used a unique set-up of eight field sites to study the response of bats to three different experimental light spectra in an otherwise dark and undisturbed natural habitat. We measured activity of three bat species groups around transects with light posts emitting white, green and red light with an intensity commonly used to illuminate countryside roads. The results reveal a strong and spectrum-dependent response for the slow-flying Myotis and Plecotus and more agile Pipistrellus species, but not for Nyctalus and Eptesicus species. Plecotus and Myotis species avoided white and green light, but were equally abundant in red light and darkness. The agile, opportunistically feeding Pipistrellus species were significantly more abundant around white and green light, most likely because of accumulation of insects, but equally abundant in red illuminated transects compared to dark control. Forest-dwelling Myotis and Plecotus species and more synanthropic Pipistrellus species are thus least disturbed by red light. Hence, in order to limit the negative impact of light at night on bats, white and green light should be avoided in or close to natural habitat, but red lights may be used if illumination is needed.  
  Address Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28566484; PMCID:PMC5454258 Approved no  
  Call Number LoNNe @ kyba @ Serial 1690  
Permanent link to this record
 

 
Author Katz, N.; Pruitt, J.N.; Scharf, I. url  doi
openurl 
  Title The complex effect of illumination, temperature, and thermal acclimation on habitat choice and foraging behavior of a pit-building wormlion Type Journal Article
  Year 2017 Publication Behavioral Ecology and Sociobiology Abbreviated Journal Behav Ecol Sociobiol  
  Volume 71 Issue 9 Pages (up)  
  Keywords Animals  
  Abstract Habitat selection has consequences for an animal’s fitness, especially for sit-and-wait predators with limited mobility, and which cannot always correct earlier suboptimal choices. Environmental change may nevertheless lead individuals to relocate to another site, although such relocations can be energetically costly or risky. Temperature and illumination are two important factors that undergo change in seasonal and daily cycles that may impact habitat quality. Animals must therefore either acclimate to the new conditions or relocate. Wormlions are sit-and-wait, trap-building predators whose success in foraging is highly dependent on their surroundings. Here, we manipulated temperature (high, low, and moderate) and let the wormlions choose between lit and shaded conditions. We found that the typical wormlion preference for shaded microhabitats decreased with increasing temperature. We then followed wormlion behavior under a full-factorial design of two constant illumination conditions (light vs. shade) and three temperatures. Although both constant light and high temperature reduced foraging performance, expressed in pit construction tendency and pit area, the two conditions had a non-additive effect. Acclimation to extreme thermal conditions moderated the negative effects of such temperatures, expressed in a higher tendency to construct a pit, and equalized performance across temperatures. Finally, the high temperature reduced behavioral consistency while acclimation increased it, suggesting that consistency is impaired by unfavorable environmental change. To conclude, while an environmental change usually affects several environmental factors simultaneously, the induced behavioral change is neither synergic nor additive and can even differ from the response to each unfavorable environmental factor in isolation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0340-5443 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1702  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: