|   | 
Details
   web
Records
Author Brown, D. R.
Title Natural illumination charts Type Journal Article
Year 1952 Publication Research and Development Project NS 714-100 Abbreviated Journal
Volume Issue Pages (up)
Keywords Moonlight
Abstract
Address
Corporate Author Thesis
Publisher Department of the Navy, Bureau of Ships Place of Publication Washington, DC. Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1620
Permanent link to this record
 

 
Author Miranda-Anaya, M.; Luna-Moreno, D.; Carmona-Castro, A.; Dí­az-Muñoz, M.
Title Differences in Photic Entrainment of Circadian Locomotor Activity Between Lean and Obese Volcano Mice (Neotomodon alstoni) Type Journal Article
Year 2017 Publication Journal of Circadian Rhythms Abbreviated Journal
Volume 15 Issue 1 Pages (up)
Keywords Animals
Abstract Obesity is a growing problem worldwide with a clear impact on health status. It is also a condition that negatively affects circadian rhythms. When the mouse Neotomodon alstoni is fed a regular rodent chow, some individuals develop obesity, representing an opportunity to compare the effects of spontaneous obesity upon the circadian organization in this species with that observed in other rodents with induced obesity. We report differences in the free running circadian locomotor activity rhythm and in the effects of light pulses between lean and obese mice. Also, the photo-induced expression of the c-Fos protein and vasoactive intestinal peptide (VIP) in the suprachiasmatic nucleus (SCN) were examined at circadian time (CT) 14 and 22. We show that obese mice have a larger dispersion of the period of circadian locomotor rhythm in constant darkness. Photic induced phase shifts are nearly 50% shorter at CT 14, and 50% larger at CT 22 than in lean mice. The photoinduction of VIP in the SCN at CT 22 was larger in obese mice, which may be related to the differences observed in photic phase shifting. Our work indicates that the obesity in Neotomodon has effects on the neural mechanisms that regulate the circadian system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1740-3391 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1630
Permanent link to this record
 

 
Author Keshet-Sitton, A.; Or-Chen, K.; Huber, E.; Haim, A.
Title Illuminating a Risk for Breast Cancer: A Preliminary Ecological Study on the Association Between Streetlight and Breast Cancer Type Journal Article
Year 2016 Publication Integrative Cancer Therapies Abbreviated Journal Integr Cancer Ther
Volume Issue Pages (up)
Keywords Human Health
Abstract Artificial light at night (ALAN) for elongating photophase is a new source of pollution. We examined the association between measured ALAN levels and breast cancer (BC) standard morbidity ratio (SMR) at a statistical area (SA) level in an urban environment. Sample size consisted of 266 new BC cases ages 35-74. Light measurements (lux) were performed in 11 SAs. A new calculated variable of morbidity per SA size (SMR35-74/km2) was correlated with the light variables per road length, using Pearson correlations (P < .05, 1-tailed). Looking for a light threshold, we correlated percentage of light points above SA light intensity median with SMR35-74/km2 SMR35-74/km2 was significantly and positively strongly correlated with mean, median, and standard-deviation (SD) light intensity per road length (r = .79, P < .01, R2 = .63; r = .77, P < .01, R2 = .59; and r = .79, P < .01, R2 = .63). Light threshold results demonstrate a marginally significant positive moderate correlation between percentage of points above 16.3 lux and SMR35-74/km2 (r = .48, P < .07; R2 = .23). In situ results support the hypothesis that outdoor ALAN illumination is associated with a higher BC-SMR in a specific area and age group. Moreover, we suggest an outdoor light threshold of approximately 16 lux as the minimal intensity to affect melatonin levels and BC morbidity. To the best of our knowledge, our attempt is the first to use this method and show such association between streetlight intensity and BC morbidity and therefore should be further developed.
Address University of Haifa, Haifa, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1534-7354 ISBN Medium
Area Expedition Conference
Notes PMID:27899698 Approved no
Call Number LoNNe @ kyba @ Serial 1635
Permanent link to this record
 

 
Author Kwak, M.J.; Lee, S.H.; Khaine, I.; Je, S.M.; Lee, T.Y.; You, H.N.; Lee, H.K.; Jang, J.H.; Kim, I.; Woo, S.Y.
Title Stomatal movements depend on interactions between external night light cue and internal signals activated by rhythmic starch turnover and abscisic acid (ABA) levels at dawn and dusk Type Journal Article
Year 2017 Publication Acta Physiologiae Plantarum Abbreviated Journal Acta Physiol Plant
Volume 39 Issue 8 Pages (up)
Keywords Plants
Abstract Yellow poplar (Liriodendron tulipifera L.) is a widespread hardwood tree of great ecological and economic value. Light pollution caused by excessive and indiscriminate exposure to artificial night light has emerged as a new risk factor due to its adverse effects related to energy waste, sleep disorders, anthropogenic habitat disturbance, and perceptual disorder of daily and seasonal rhythms in wildlife. However, it remains unknown how associations between artificial night light and stomatal behaviors controlled by internal signals are established. After continuous exposure to artificial light at night over 3 years, leaves in the experimental set-up were measured for stomatal movements, starch turnover, endogenous abscisic acid (ABA) levels, and chloroplast ultrastructure during the growing season. Yellow poplar showed dynamic changes in stomatal movement, starch turnover, and endogenous ABA levels in response to day/artificial night light cycle, resulting in reduction of circadian phase-shifting capacity at both dusk and dawn and normal chloroplast development as compared with natural night. Nighttime light exposure may act as a major factor for disorder of circadian and circannual rhythms as well as physiological and ultrastructural repressor in plants, via a modification of the perceived photoperiod. Our study suggests that these dynamic responses can provide advantageous insights that complement the current knowledge on light pollution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0137-5881 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1682
Permanent link to this record
 

 
Author Spoelstra, K.; van Grunsven, R.H.A.; Ramakers, J.J.C.; Ferguson, K.B.; Raap, T.; Donners, M.; Veenendaal, E.M.; Visser, M.E.
Title Response of bats to light with different spectra: light-shy and agile bat presence is affected by white and green, but not red light Type Journal Article
Year 2017 Publication Proceedings. Biological Sciences Abbreviated Journal Proc Biol Sci
Volume 284 Issue 1855 Pages (up)
Keywords Animals
Abstract Artificial light at night has shown a remarkable increase over the past decades. Effects are reported for many species groups, and include changes in presence, behaviour, physiology and life-history traits. Among these, bats are strongly affected, and how bat species react to light is likely to vary with light colour. Different spectra may therefore be applied to reduce negative impacts. We used a unique set-up of eight field sites to study the response of bats to three different experimental light spectra in an otherwise dark and undisturbed natural habitat. We measured activity of three bat species groups around transects with light posts emitting white, green and red light with an intensity commonly used to illuminate countryside roads. The results reveal a strong and spectrum-dependent response for the slow-flying Myotis and Plecotus and more agile Pipistrellus species, but not for Nyctalus and Eptesicus species. Plecotus and Myotis species avoided white and green light, but were equally abundant in red light and darkness. The agile, opportunistically feeding Pipistrellus species were significantly more abundant around white and green light, most likely because of accumulation of insects, but equally abundant in red illuminated transects compared to dark control. Forest-dwelling Myotis and Plecotus species and more synanthropic Pipistrellus species are thus least disturbed by red light. Hence, in order to limit the negative impact of light at night on bats, white and green light should be avoided in or close to natural habitat, but red lights may be used if illumination is needed.
Address Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:28566484; PMCID:PMC5454258 Approved no
Call Number LoNNe @ kyba @ Serial 1690
Permanent link to this record