|   | 
Details
   web
Records
Author Rund, S.; O'Donnell, A.; Gentile, J.; Reece, S.
Title Daily Rhythms in Mosquitoes and Their Consequences for Malaria Transmission Type Journal Article
Year 2016 Publication Insects Abbreviated Journal Insects
Volume 7 Issue 2 Pages 14
Keywords Animals; Human Health
Abstract The 24-h day involves cycles in environmental factors that impact organismal fitness. This is thought to select for organisms to regulate their temporal biology accordingly, through circadian and diel rhythms. In addition to rhythms in abiotic factors (such as light and temperature), biotic factors, including ecological interactions, also follow daily cycles. How daily rhythms shape, and are shaped by, interactions between organisms is poorly understood. Here, we review an emerging area, namely the causes and consequences of daily rhythms in the interactions between vectors, their hosts and the parasites they transmit. We focus on mosquitoes, malaria parasites and vertebrate hosts, because this system offers the opportunity to integrate from genetic and molecular mechanisms to population dynamics and because disrupting rhythms offers a novel avenue for disease control.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2075-4450 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1421
Permanent link to this record
 

 
Author Avtar, R.; Tripathi, S.; Aggarwal, A.K.
Title Assessment of Energy–Population–Urbanization Nexus with Changing Energy Industry Scenario in India Type Journal Article
Year 2019 Publication Land Abbreviated Journal Land
Volume 8 Issue 8 Pages 124
Keywords Remote Sensing
Abstract The demand for energy has been growing worldwide, especially in India partly due to the rapid population growth and urbanization of the country. To meet the ever-increasing energy requirement while maintaining an ecological balance is a challenging task. However, the energy industry-induced effect on population and urbanization has not been addressed before. Therefore, this study investigates the linkages between energy, population, and urbanization. The study also aims to find the quantifiable indicators for the population growth and rate of urbanization due to the expanding energy industry. The integrated framework uses a multi-temporal Landsat data to analyze the urbanization pattern, a census data for changes in population growth, night time light (NTL) data as an indicator for economic development and energy production and consumption data for energy index. Multi-attribute model is used to calculate a unified metric, termed as the energy–population–urbanization (EPU) nexus index. The proposed approach is demonstrated in the National Thermal Power Corporation (NTPC) Dadri power plant located in Uttar Pradesh, India. Landsat and NTL data clearly shows the urbanization pattern, economic development, and electrification in the study area. A comparative analysis based on various multi-attribute decision model assessment techniques suggests that the average value of EPU nexus index is 0.529, which significantly large compared to other studies and require special attention by policymakers because large EPU index indicates stronger correlation among energy, population, and urbanization. The authors believe that it would help the policymakers in planning and development of future energy projects, policies, and long-term strategies as India is expanding its energy industry.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2073-445X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2620
Permanent link to this record
 

 
Author Avtar, R.; Tripathi, S.; Aggarwal, A.K.
Title Assessment of Energy–Population–Urbanization Nexus with Changing Energy Industry Scenario in India Type Journal Article
Year 2019 Publication Land Abbreviated Journal Land
Volume 8 Issue 8 Pages 124
Keywords Remote Sensing
Abstract The demand for energy has been growing worldwide, especially in India partly due to the rapid population growth and urbanization of the country. To meet the ever-increasing energy requirement while maintaining an ecological balance is a challenging task. However, the energy industry-induced effect on population and urbanization has not been addressed before. Therefore, this study investigates the linkages between energy, population, and urbanization. The study also aims to find the quantifiable indicators for the population growth and rate of urbanization due to the expanding energy industry. The integrated framework uses a multi-temporal Landsat data to analyze the urbanization pattern, a census data for changes in population growth, night time light (NTL) data as an indicator for economic development and energy production and consumption data for energy index. Multi-attribute model is used to calculate a unified metric, termed as the energy–population–urbanization (EPU) nexus index. The proposed approach is demonstrated in the National Thermal Power Corporation (NTPC) Dadri power plant located in Uttar Pradesh, India. Landsat and NTL data clearly shows the urbanization pattern, economic development, and electrification in the study area. A comparative analysis based on various multi-attribute decision model assessment techniques suggests that the average value of EPU nexus index is 0.529, which significantly large compared to other studies and require special attention by policymakers because large EPU index indicates stronger correlation among energy, population, and urbanization. The authors believe that it would help the policymakers in planning and development of future energy projects, policies, and long-term strategies as India is expanding its energy industry.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2073-445X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2659
Permanent link to this record
 

 
Author Xu, C.; Wang, H.-J.; Yu, Q.; Wang, H.-Z.; Liang, X.-M.; Liu, M.; Jeppesen, E.
Title Effects of Artificial LED Light on the Growth of Three Submerged Macrophyte Species during the Low-Growth Winter Season: Implications for Macrophyte Restoration in Small Eutrophic Lakes Type Journal Article
Year 2019 Publication Water Abbreviated Journal Water
Volume 11 Issue 7 Pages 1512
Keywords Plants
Abstract Eutrophication of lakes is becoming a global environmental problem, leading to, among other things, rapid reproduction of phytoplankton, increased turbidity, loss of submerged macrophytes, and the recovery of these plants following nutrient loading reduction is often delayed. Artificial light supplement could potentially be a useful method to help speeding up recovery. In this study, three common species of submerged macrophytes, Vallisneria natans, Myriophyllum spicatum and Ceratophyllum demersum, were exposed to three LED light treatments (blue, red and white) and shaded (control) for 100 days (from 10 November 2016 to 18 January 2017) in 12 tanks holding 800 L of water. All the three LED light treatments promoted growth of the three macrophyte species in terms of shoot number, length and dry mass. The three light treatments differed in their effects on the growth of the plants; generally, the red light had the strongest promoting effects, followed by blue and white. The differences in light effects may be caused by the different photosynthetic photon flux density (PPFD) of the lights, as indicated by an observed relationship of PPFD with the growth variables. The three species also responded differently to the light treatments, V. natans and C. demersum showing higher growth than M. spicatum. Our findings demonstrate that artificial light supplement in the low-growth winter season can promote growth and recovery of submerged macrophytes and hence potentially enhance their competitiveness against phytoplankton in the following spring. More studies, however, are needed to elucidate if LED light treatment is a potential restoration method in small lakes, when the growth of submerged macrophytes are delayed following a sufficiently large external nutrient loading reduction for a shift to a clear macrophyte state to have a potential to occur. Our results may also be of relevance when elucidating the role of artificial light from cities on the ecosystem functioning of lakes in urban areas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2073-4441 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2606
Permanent link to this record
 

 
Author Li, R.; Liu, X.; Li, X.
Title Estimation of the PM2.5 Pollution Levels in Beijing Based on Nighttime Light Data from the Defense Meteorological Satellite Program-Operational Linescan System Type Journal Article
Year 2015 Publication Atmosphere Abbreviated Journal Atmosphere
Volume 6 Issue 5 Pages 607-622
Keywords Remote Sensing
Abstract Nighttime light data record the artificial light on the Earth’s surface and can be used to estimate the degree of pollution associated with particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) in the ground-level atmosphere. This study proposes a simple method for monitoring PM2.5 concentrations at night by using nighttime light imagery from the Defense Meteorological Satellite Program-Operational Linescan System (DMSP-OLS). This research synthesizes remote sensing and geographic information system techniques and establishes a back propagation neural-network (BP network) model. The BP network model for nighttime light data performed well in estimating the PM2.5 pollution in Beijing. The correlation coefficient between the BP network model predictions and the corrected PM2.5 concentration was 0.975; the root mean square error was 26.26 μg/m3, with a corresponding average PM2.5 concentration of 155.07 μg/m3; and the average accuracy was 0.796. The accuracy of the results primarily depended on the method of selecting regions in the DMSP nighttime light data. This study provides an opportunity to measure the nighttime environment. Furthermore, these results can assist government agencies in determining particulate matter pollution control areas and developing and implementing environmental conservation planning.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2073-4433 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 1173
Permanent link to this record