toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jin-Joo Lee, Seong-Sik Yoo, Ho-Seok Kang, Dong-Hee Kim, Jin-Ho Nam, Hyun-Ji Kim, Hoon Kim url  openurl
  Title A Research on Visual Performance at Different Ages Depending on Color Temperature of Headlights Type Journal Article
  Year 2017 Publication Journal of the Korean Institute of Illuminating and Electrical Installation Engineers Abbreviated Journal  
  Volume 31 Issue (down) 8 Pages 40-48  
  Keywords Lighting  
  Abstract Under night-time driving conditions, both cones and rods in eye’s retina simultaneously act to influence mesopic vision in two areas: central and peripheral visions. However, as people age, the amount of light received as well as the color temperature perceived by the human eyes also change. This research, through simulations and scaled down experiments with various headlight color temperatures and two levels of fixed brightness, deals with differences in ability to detect and identify obstacles by the subjects in their 20’s and 50’s.

According to the results obtained from the experiments on peripheral vision, subjects in their 20’s detected the obstacles more quickly at the combined color temperature of 3,000K+4,500K than at the single color temperature of 4,500K, and likewise at 3,000K+5,500K than at 5,500K; this tendency was significantly more noticeable for the subjects in their 50’s. As for the central vision, the results showed that there were no significant differences due to color temperature between the subjects in their 20’s and those in their 50’s. Moreover, the landolt ring experiment conducted under low luminance yielded higher percentage of correct answers at combined color temperatures.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1743  
Permanent link to this record
 

 
Author Madahi, P.-G.; Ivan, O.; Adriana, B.; Diana, O.; Carolina, E. url  doi
openurl 
  Title Constant light during lactation programs circadian and metabolic systems Type Journal Article
  Year 2018 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 35 Issue (down) 8 Pages 1153-1167  
  Keywords Animals  
  Abstract Exposure to light at night is a disruptive condition for the adult circadian system, leading to arrhythmicity in nocturnal rodents. Circadian disruption is a risk factor for developing physiological and behavioral alterations, including weight gain and metabolic disease. During early stages of development, the circadian system undergoes a critical period of adjustment, and it is especially vulnerable to altered lighting conditions that may program its function, leading to long-term effects. We hypothesized that during lactation a disrupted light-dark cycle due to light at night may disrupt the circadian system and in the long term induce metabolic disorders. Here we explored in pups, short- and long-term effects of constant light (LL) during lactation. In the short term, LL caused a loss of rhythmicity and a reduction in the immunopositive cells of VIP, AVP, and PER1 in the suprachiasmatic nucleus (SCN). In the short term, the affection on the circadian clock in the pups resulted in body weight gain, loss of daily rhythms in general activity, plasma glucose and triglycerides (TG). Importantly, the DD conditions during development also induced altered daily rhythms in general activity and in the SCN. Exposure to LD conditions after lactation did not restore rhythmicity in the SCN, and the number of immunopositve cells to VIP, AVP, and PER1 remained reduced. In the long term, daily rhythmicity in general activity was restored; however, daily rhythms in glucose and TG remained disrupted, and daily mean levels of TG were significantly increased. Present results point out the programming role played by the LD cycle during early development in the function of the circadian system and on metabolism. This study points out the risk represented by exposure to an altered light-dark cycle during early stages of development. ABBREVIATIONS: AVP: arginine vasopressin peptide; CRY: cryptochrome; DD: constant darkness; DM: dorsomedial; LD: light-dark cycle; LL: constant light; NICUs: neonatal intensive care units; P: postnatal days; PER: period; S.E.M.: standard error of the mean; SCN: suprachiasmatic nucleus; TG: triglycerides; VIP: vasointestinal peptide; VL: ventrolateral; ZT: zeitgeber time.  
  Address a Facultad de Medicina , Universidad Nacional Autonoma de Mexico, UNAM , Mexico City , Mexico  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29688088 Approved no  
  Call Number GFZ @ kyba @ Serial 1884  
Permanent link to this record
 

 
Author James, P.; Bertrand, K.A.; Hart, J.E.; Schernhammer, E.S.; Tamimi, R.M.; Laden, F. url  doi
openurl 
  Title Outdoor Light at Night and Breast Cancer Incidence in the Nurses' Health Study II Type Journal Article
  Year 2017 Publication Environmental Health Perspectives Abbreviated Journal Environ Health Perspect  
  Volume 125 Issue (down) 8 Pages 087010  
  Keywords Human Health  
  Abstract BACKGROUND: Animal and epidemiologic studies suggest that exposure to light at night (LAN) may disrupt circadian patterns and decrease nocturnal secretion of melatonin, which may disturb estrogen regulation, leading to increased breast cancer risk. OBJECTIVES: We examined the association between residential outdoor LAN and breast cancer incidence using data from the nationwide U.S.-based Nurses' Health Study II cohort. METHODS: We followed 109,672 women from 1989 through 2013. Cumulative LAN exposure was estimated using time-varying satellite data for a composite of persistent nighttime illumination at approximately 1 km(2) scale for each residence during follow-up. Incident invasive breast cancer cases were confirmed by medical record review. We used Cox proportional hazard models to calculate hazard ratios (HRs) and 95% confidence intervals (CIs), adjusting for anthropometric, reproductive, lifestyle, and socioeconomic risk factors. RESULTS: Over 2,187,425 person-years, we identified 3,549 incident breast cancer cases. Based on a fully adjusted model, the estimated HR for incident breast cancer with an interquartile range (IQR) (31.6 nW/cm(2)/sr) increase in cumulative average outdoor LAN was 1.05 (95% CI: 1.00, 1.11). An association between LAN and breast cancer appeared to be limited to women who were premenopausal at the time of a case [HR=1.07 (95% CI: 1.01, 1.14) based on 1,973 cases vs. HR=1.00 (95% CI: 0.91, 1.09) based on 1,172 cases in postmenopausal women; p-interaction=0.08]. The LAN-breast cancer association was observed only in past and current smokers at the end of follow-up [HR=1.00 (95% CI: 0.94, 1.07) based on 2,215 cases in never smokers; HR=1.10 (95% CI: 1.01, 1.19) based on 1,034 cases in past smokers vs. HR=1.21 (95% CI: 1.07, 1.37) for 300 cases in current smokers; p-interaction=0.08]. CONCLUSIONS: Although further work is required to confirm our results and to clarify potential mechanisms, our findings suggest that exposure to residential outdoor light at night may contribute to invasive breast cancer risk. https://doi.org/10.1289/EHP935.  
  Address Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0091-6765 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28886600; PMCID:PMC5783660 Approved no  
  Call Number GFZ @ kyba @ Serial 1886  
Permanent link to this record
 

 
Author Mard, J.; Di Baldassarre, G.; Mazzoleni, M. url  doi
openurl 
  Title Nighttime light data reveal how flood protection shapes human proximity to rivers Type Journal Article
  Year 2018 Publication Science Advances Abbreviated Journal Sci Adv  
  Volume 4 Issue (down) 8 Pages eaar5779  
  Keywords Remote Sensing  
  Abstract To understand the spatiotemporal changes of flood risk, we need to determine the way in which humans adapt and respond to flood events. One adaptation option consists of resettling away from flood-prone areas to prevent or reduce future losses. We use satellite nighttime light data to discern the relationship between long-term changes in human proximity to rivers and the occurrence of catastrophic flood events. Moreover, we explore how these relationships are influenced by different levels of structural flood protection. We found that societies with low protection levels tend to resettle further away from the river after damaging flood events. Conversely, societies with high protection levels show no significant changes in human proximity to rivers. Instead, such societies continue to rely heavily on structural measures, reinforcing flood protection and quickly resettling in flood-prone areas after a flooding event. Our work reveals interesting aspects of human adaptation to flood risk and offers key insights for comparing different risk reduction strategies. In addition, this study provides a framework that can be used to further investigate human response to floods, which is relevant as urbanization of floodplains continues and puts more people and economic assets at risk.  
  Address IHE Delft Institute for Water Education, 2611 AX Delft, Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30140738; PMCID:PMC6105301 Approved no  
  Call Number GFZ @ kyba @ Serial 1989  
Permanent link to this record
 

 
Author Hopkins, G.R.; Gaston, K.J.; Visser, M.E.; Elgar, M.A.; Jones, T.M. url  doi
openurl 
  Title Artificial light at night as a driver of evolution across urban-rural landscapes Type Journal Article
  Year 2018 Publication Frontiers in Ecology and the Environment Abbreviated Journal Front Ecol Environ  
  Volume 16 Issue (down) 8 Pages 472-479  
  Keywords Ecology, Commentary  
  Abstract Light is fundamental to biological systems, affecting the daily rhythms of bacteria, plants, and animals. Artificial light at night (ALAN), a ubiquitous feature of urbanization, interferes with these rhythms and has the potential to exert strong selection pressures on organisms living in urban environments. ALAN also fragments landscapes, altering the movement of animals into and out of artificially lit habitats. Although research has documented phenotypic and genetic differentiation between urban and rural organisms, ALAN has rarely been considered as a driver of evolution. We argue that the fundamental importance of light to biological systems, and the capacity for ALAN to influence multiple processes contributing to evolution, makes this an important driver of evolutionary change, one with the potential to explain broad patterns of population differentiation across urban–rural landscapes. Integrating ALAN's evolutionary potential into urban ecology is a targeted and powerful approach to understanding the capacity for life to adapt to an increasingly urbanized world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1540-9295 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number NC @ ehyde3 @ Serial 2073  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: