|   | 
Details
   web
Records
Author Bouroussis, C.A.; Topalis, F.V.
Title The effect of the spectral response of measurement instruments in the assessment of night sky brightness Type Journal Article
Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 216 Issue Pages 56-69
Keywords (down) Skyglow; Instrumentation
Abstract This paper deals with the errors and uncertainties in skyglow measurements caused by the variation of sky's spectrum. It considers the theoretical spectral response of common instruments that are used for light pollution assessment. Various types of light sources were used in this investigation. This study calculates the spectral mismatch errors and the corresponding correction factors for each combination of instrument and light source. The calculation method is described and the results are presented in multiple figures. Calculated data show a big variation in potential errors that can be introduced when comparing readings of diverse instruments without considering the sky spectrum variation. This makes the spectral data of the sky a mandatory input to the dark sky assessment. Useful conclusions, related to instruments with better or worse behaviour, are derived from the calculations. The paper also includes suggestions on how to conduct multi-instrument measurements with or without spectral data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1908
Permanent link to this record
 

 
Author Jechow, A.; Kolláth, Z.; Lerner, A.; Hänel, A.; Shashar, N.; Hölker, F.; Kyba, C.C.M.
Title Measuring Light Pollution with Fisheye Lens Imagery from A Moving Boat–A Proof of Concept Type Journal Article
Year 2017 Publication International Journal of Sustainable Lighting Abbreviated Journal
Volume 19 Issue 1 Pages 15-25
Keywords (down) Skyglow; Instrumentation
Abstract Near all-sky imaging photometry was performed from a boat on the Gulf of Aqaba to measure the night sky brightness in a coastal environment. The boat was not anchored, and therefore drifted and rocked. The camera was mounted on a tripod without any inertia/motion stabilization. A commercial digital single lens reflex (DSLR) camera and fisheye lens were used with ISO setting of 6400, with the exposure time varied between 0.5 s and 5 s. We find that despite movement of the vessel the measurements produce quantitatively comparable results apart from saturation effects. We discuss the potential and limitations of this method for mapping light pollution in marine and freshwater systems. This work represents the proof of concept that all-sky photometry with a commercial DSLR camera is a viable tool to determine light pollution in an ecological context from a moving boat.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2151
Permanent link to this record
 

 
Author Walker, C.E.; Pompea, S.M.
Title National education program for energy efficient illumination engineering Type Journal Article
Year 2011 Publication Proceedings of SPIE Eco-Photonics 2011, Strasbourg, France, March 2011. Abbreviated Journal
Volume 8065 Issue Pages 80650Q-1
Keywords (down) Skyglow; Illumination engineering; Pollution; Schools and universities; Observatories; Astronomy; Eye
Abstract About one-third of outdoor lighting escapes unused into the sky, wasting energy and causing sky glow. Because of excessive sky glow around astronomical facilities, the National Optical Astronomy Observatory has a strong motivation to lead light pollution education efforts. While our original motivation of preserving the dark skies near observatories is still important, energy conservation is a critical problem that needs to be addressed nationwide. To address this problem we have created an extensive educational program on understanding and measuring light pollution. A set of four learning experiences introduces school students at all grade levels to basic energy-responsive illumination engineering design principles that can minimize light pollution. We created and utilize the GLOBE at Night citizen science light pollution assessment campaign as a cornerstone activity. We also utilize educational activities on light shielding that are introduced through a teaching kit. These two components provide vocabulary, concepts, and visual illustrations of the causes of light pollution. The third, more advanced component is the school outdoor lighting audit, which has students perform an audit and produce a revised master plan for compliant lighting. These learning experiences provide an integrated learning unit that is highly adaptable for U.S. and international education efforts in this area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 547
Permanent link to this record
 

 
Author Secondi, J.; Dupont, V.; Davranche, A.; Mondy, N.; Lengagne, T.; Thery, M.
Title Variability of surface and underwater nocturnal spectral irradiance with the presence of clouds in urban and peri-urban wetlands Type Journal Article
Year 2017 Publication PloS one Abbreviated Journal PLoS One
Volume 12 Issue 11 Pages e0186808
Keywords (down) Skyglow; Ecology
Abstract Artificial light at night (ALAN) is an increasing phenomenon worldwide. It causes a wealth of biological and ecological effects that may eventually affect populations and ecosystems. Despite the growing concern about ALAN, little is known about the light levels species are exposed to at night, especially for wetlands and underwater habitats. We determined nocturnal irradiance in urban and peri-urban wetlands above and under water, and assessed the effect of cloud cover on the variability of ALAN across the urban gradient. Even in aquatic habitats, cloud cover could increase irradiance beyond values observed during clear full moon nights. We report a negative relationship between baseline irradiance and the increase in irradiance during overcast nights. According to this result and previous studies, we propose that the change in the variation regime of ALAN between the urban center and rural land at its periphery is a usual feature. We discuss the ecological and evolutionary implications of this spatial variation in the urban and peri-urban environment.
Address UMR 7179 CNRS-MNHN, Mecanismes Adaptatifs et Evolution, Brunoy, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:29117235; PMCID:PMC5695598 Approved no
Call Number LoNNe @ kyba @ Serial 1801
Permanent link to this record
 

 
Author Jechow, A.; Holker, F.; Kyba, C.C.M.
Title Using all-sky differential photometry to investigate how nocturnal clouds darken the night sky in rural areas Type Journal Article
Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 9 Issue 1 Pages 1391
Keywords (down) Skyglow; differential photometry; clouds; sky brightness
Abstract Artificial light at night has affected most of the natural nocturnal landscapes worldwide and the subsequent light pollution has diverse effects on flora, fauna and human well-being. To evaluate the environmental impacts of light pollution, it is crucial to understand both the natural and artificial components of light at night under all weather conditions. The night sky brightness for clear skies is relatively well understood and a reference point for a lower limit is defined. However, no such reference point exists for cloudy skies. While some studies have examined the brightening of the night sky by clouds in urban areas, the published data on the (natural) darkening by clouds is very sparse. Knowledge of reference points for the illumination of natural nocturnal environments however, is essential for experimental design and ecological modeling to assess the impacts of light pollution. Here we use differential all-sky photometry with a commercial digital camera to investigate how clouds darken sky brightness at two rural sites. The spatially resolved data enables us to identify and study the nearly unpolluted parts of the sky and to set an upper limit on ground illumination for overcast nights at sites without light pollution.
Address GFZ German Research Centre for Geosciences, Remote Sensing, Telegrafenberg, 14473, Potsdam, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:30718668; PMCID:PMC6361923 Approved no
Call Number IDA @ john @ Serial 2188
Permanent link to this record