|   | 
Details
   web
Records
Author Jechow, A.; Holker, F.; Kyba, C.C.M.
Title Using all-sky differential photometry to investigate how nocturnal clouds darken the night sky in rural areas Type Journal Article
Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 9 Issue 1 Pages 1391
Keywords (down) Skyglow; differential photometry; clouds; sky brightness
Abstract Artificial light at night has affected most of the natural nocturnal landscapes worldwide and the subsequent light pollution has diverse effects on flora, fauna and human well-being. To evaluate the environmental impacts of light pollution, it is crucial to understand both the natural and artificial components of light at night under all weather conditions. The night sky brightness for clear skies is relatively well understood and a reference point for a lower limit is defined. However, no such reference point exists for cloudy skies. While some studies have examined the brightening of the night sky by clouds in urban areas, the published data on the (natural) darkening by clouds is very sparse. Knowledge of reference points for the illumination of natural nocturnal environments however, is essential for experimental design and ecological modeling to assess the impacts of light pollution. Here we use differential all-sky photometry with a commercial digital camera to investigate how clouds darken sky brightness at two rural sites. The spatially resolved data enables us to identify and study the nearly unpolluted parts of the sky and to set an upper limit on ground illumination for overcast nights at sites without light pollution.
Address GFZ German Research Centre for Geosciences, Remote Sensing, Telegrafenberg, 14473, Potsdam, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:30718668; PMCID:PMC6361923 Approved no
Call Number IDA @ john @ Serial 2188
Permanent link to this record
 

 
Author Leinert, C.; Bowyer, S.; Haikala, L.K.; Hanner, M.S.; Hauser, M.G.; Levasseur-Regourd, A.-C.; Mann, I.; Mattila, K.; Reach, W.T.; Schlosser, W.; Staude, H.J.; Toller, G.N.; Weiland, J.L.; Weinberg, J.L.; Witt, A.N.
Title The 1997 reference of diffuse night sky brightness Type Journal Article
Year 1998 Publication Astronomy and Astrophysics Supplement Series Abbreviated Journal Astron. Astrophys. Suppl. Ser.
Volume 127 Issue 1 Pages 1-99
Keywords (down) Skyglow; darkness; Sky brightness
Abstract In the following we present material in tabular and graphical form, with the aim to allow the non-specialist to obtain a realistic estimate of the diffuse night sky brightness over a wide range of wavelengths from the far UV longward of Lyalpha to the far-infrared. At the same time the data are to provide a reference for cases in which background brightness has to be discussed, including the planning for space observations and the issue of protection of observatory sites. We try to give a critical presentation of the status at the beginning of 1997. Prepared by members of Commission 21 ``Light of the night sky'' of the IAU, including most of the recent (vice-)presidents.
Address Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
Corporate Author Thesis
Publisher EDP Sciences Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0365-0138 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1132
Permanent link to this record
 

 
Author Falchi, F.; Cinzano, P.; Duriscoe, D.; Kyba, C.C.M.; Elvidge, C.D.; Baugh, K.; Portnov, B.A.; Rybnikova, N.A.; Furgoni, R.
Title The new world atlas of artificial night sky brightness Type Journal Article
Year 2016 Publication Science Advances Abbreviated Journal Science Advances
Volume 2 Issue 6 Pages e1600377-e1600377
Keywords (down) Skyglow; Conservation; Remote Sensing
Abstract Artificial lights raise night sky luminance, creating the most visible effect of light pollution—artificial skyglow. Despite the increasing interest among scientists in fields such as ecology, astronomy, health care, and land-use planning, light pollution lacks a current quantification of its magnitude on a global scale. To overcome this, we present the world atlas of artificial sky luminance, computed with our light pollution propagation software using new high-resolution satellite data and new precision sky brightness measurements. This atlas shows that more than 80% of the world and more than 99% of the U.S. and European populations live under light-polluted skies. The Milky Way is hidden from more than one-third of humanity, including 60% of Europeans and nearly 80% of North Americans. Moreover, 23% of the world’s land surfaces between 75°N and 60°S, 88% of Europe, and almost half of the United States experience light-polluted nights.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1466
Permanent link to this record
 

 
Author Garrett, J. K., Donald, P. F., & Gaston, K. J.
Title Skyglow extends into the world’s Key Biodiversity Areas Type Journal Article
Year 2019 Publication Animal Conservation Abbreviated Journal
Volume Issue Pages cv.12480
Keywords (down) Skyglow; Conservation; Biodiversity; Key Biodiversity Area; KBA
Abstract The proportion of the Earth’s surface that experiences a naturally dark environment at night is rapidly declining with the introduction of artificial light. Biological impacts of this change have been documented from genes to ecosystems, and for a wide diversity of environments and organisms. The likely severity of these impacts depends heavily on the relationship between the distribution of artificial night-time lighting and biodiversity. Here, we carry out a global assessment of the overlap between areas of conservation priority and the most recent atlas of artificial skyglow. We show that of the world’s Key Biodiversity Areas (KBAs), less than a third have completely pristine night-time skies, about a half lie entirely under artificially bright skies and only about a fifth contain no area in which night-time skies are not polluted to the zenith. The extent of light pollution of KBAs varies by region, affecting the greatest proportion of KBAs in Europe and the Middle East. Statistical modelling revealed associations between light pollution within KBAs and associated levels of both gross domestic product and human population density. This suggests that these patterns will worsen with continued economic development and growth in the human population
Address Environment & Sustainability Institute, University of Exeter, Penryn, UK; j.k.garrett(at)exeter.ac.uk
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2309
Permanent link to this record
 

 
Author Peregrym, M., Kónya E. P., & Vasyliuk, O.
Title The impact of artificial light at night (ALAN) on the National Nature Parks, Biosphere and Naturе Reserves of the Steppe Zone and Crimean Mountains within Ukraine Type Journal Article
Year 2018 Publication Palaearctic Grasslands Abbreviated Journal
Volume Issue Pages
Keywords (down) Skyglow; Conservation
Abstract Artificial light at night (ALAN) and sky glow are a recognized anthropogenic pressure, but the consequences of this pressure on protected areas within Ukraine are unclear. This research attempted to estimate the level of light pollution on the protected territories of the National Nature Parks (NNPs), Biosphere and Nature Reserves in the Steppe Zone and Crimea Mountains of Ukraine. Kmz layers of

these protected territories and the New World Atlas of Artificial Sky Brightness, through Google Earth Pro, were used to calculate the level of artificial sky brightness for 15 NNPs, three Biosphere Reserves and 10 Nature Reserves. The results show that even some of the most protected areas within the Steppe Zone and Crimean Mountains are impacted by ALAN. Of the studied protected areas 44.2% have a natural dark night sky, 40.1% have artificial brightness ranging between 8 and 16%, and the remainder (15.7%) are polluted with an artificial brightness greater than 16%. Areas with light pollution greater than 16% are often situated near big cities or industrial centers. It was noted that light pollution levels were not taken into account during the creation of any protected areas within Ukraine.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2310
Permanent link to this record