|   | 
Details
   web
Records
Author Stevens, R.G.; Brainard, G.C.; Blask, D.E.; Lockley, S.W.; Motta, M.E.
Title Adverse health effects of nighttime lighting: comments on American Medical Association policy statement Type Journal Article
Year 2013 Publication American Journal of Preventive Medicine Abbreviated Journal Am J Prev Med
Volume 45 Issue 3 Pages 343-346
Keywords (up) American Medical Association; Cell Cycle/physiology; Circadian Rhythm/*physiology; DNA Damage/physiology; *Health Policy; Humans; Lighting/*adverse effects; United States
Abstract The American Medical Association House of Delegates in June of 2012 adopted a policy statement on nighttime lighting and human health. This major policy statement summarizes the scientific evidence that nighttime electric light can disrupt circadian rhythms in humans and documents the rapidly advancing understanding from basic science of how disruption of circadian rhythmicity affects aspects of physiology with direct links to human health, such as cell cycle regulation, DNA damage response, and metabolism. The human evidence is also accumulating, with the strongest epidemiologic support for a link of circadian disruption from light at night to breast cancer. There are practical implications of the basic and epidemiologic science in the form of advancing lighting technologies that better accommodate human circadian rhythmicity.
Address University of Connecticut Health Center, Farmington, Connecticut 06030-6325, USA. bugs@uchc.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0749-3797 ISBN Medium
Area Expedition Conference
Notes PMID:23953362 Approved no
Call Number IDA @ john @ Serial 130
Permanent link to this record
 

 
Author Miller, M.W.
Title Apparent Effects of Light Pollution on Singing Behavior of American Robins Type Journal Article
Year 2006 Publication The Condor Abbreviated Journal Condor
Volume 108 Issue 1 Pages 130
Keywords (up) American Robin; birds; light pollution; morning chorus; dawn chorus; song; Turdus migratorius; animals; communication
Abstract Astronomers consider light pollution to be a growing problem, however few studies have addressed potential effects of light pollution on wildlife. Sunlight is believed to initiate song in many bird species. If light initiates song, then light pollution may be influencing avian song behavior at a population level. This hypothesis predicts that birds breeding in areas with large amounts of artificial light will begin singing earlier in the day than birds in areas with little artificial light. Birds in highly illuminated areas might begin singing earlier than did birds in those same areas in previous years when artificial light levels were known to be, or were presumably, lower. Also, birds should begin singing earlier within a site on brightly lit nights. In 2002 and 2003 I documented initiation of morning song by breeding American Robins (Turdus migratorius) in areas with differing intensity of artificial nocturnal light. I compared my observations among sites and against historical studies. Robin populations in areas with large amounts of artificial light frequently began their morning chorus during true night. Chorus initiation time, relative to civil twilight, was positively correlated with amount of artificial light present during true night. Robin choruses in areas with little, or presumably little, artificial light have almost never begun during true night, instead appearing to track the onset of civil twilight. Proliferation of artificial nocturnal light may be strongly affecting singing behavior of American Robins at a population level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-5422 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 39
Permanent link to this record
 

 
Author Grant, R.; Halliday, T.; Chadwick, E.
Title Amphibians' response to the lunar synodic cycle--a review of current knowledge, recommendations, and implications for conservation Type Journal Article
Year 2013 Publication Behavioral Ecology Abbreviated Journal Behavioral Ecology
Volume 24 Issue 1 Pages 53-62
Keywords (up) amphibians; circular statistics; light; lunar cycle; moon phase; predator avoidance; reproductive synchronization; moonlight
Abstract The way in which amphibians respond to the geophysical changes brought about by the lunar synodic cycle is a neglected area of their ecology, but one which has recently generated interest. Knowledge of how amphibians respond to lunar phase is of intrinsic interest and also may be important for conservation and monitoring of populations. We surveyed the literature on amphibians’ responses to the lunar cycle and found 79 examples where moon phase in relation to amphibian behavior and ecology had been studied, across diverse amphibian taxa. Of the examples reviewed, most of them show some type of response to lunar phase, with only a few species being unaffected. We found that there is no significant difference between the numbers of species which increase, and those that decrease activity or reproductive behavior (including calling) during a full moon. The responses to the lunar cycle can not be generalized across taxonomic group, but instead are highly species specific and relate directly to the species’ ecology. The primary reasons for changes in amphibian behavior in response to the lunar cycle appear to be temporal synchronization of breeding and predator avoidance. Responses to changes in prey availability, facilitation of visual signalling and use of lunar cues in navigation and homing are less prevalent but merit further investigation. Comparisons between studies are hampered by differences in field and analytical methods; we therefore make a number of recommendations for future collection and analysis of data related to lunar phase.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1045-2249 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 81
Permanent link to this record
 

 
Author Fonken, L.K.; Kitsmiller, E.; Smale, L.; Nelson, R.J.
Title Dim nighttime light impairs cognition and provokes depressive-like responses in a diurnal rodent Type Journal Article
Year 2012 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume 27 Issue 4 Pages 319-327
Keywords (up) Analysis of Variance; Animals; CA1 Region, Hippocampal/cytology; CA3 Region, Hippocampal/cytology; Circadian Rhythm/*physiology; Cognition/*physiology/radiation effects; Corticosterone/blood; Dendrites/physiology/radiation effects; Dentate Gyrus/cytology; Depressive Disorder/*physiopathology; Food Preferences/physiology/radiation effects; Light; Male; Maze Learning/physiology/radiation effects; Motor Activity/physiology/radiation effects; Murinae/*physiology; Neurons/drug effects/physiology; *Photoperiod; Swimming/physiology
Abstract Circadian disruption is a common by-product of modern life. Although jet lag and shift work are well-documented challenges to circadian organization, many more subtle environmental changes cause circadian disruption. For example, frequent fluctuations in the timing of the sleep/wake schedule, as well as exposure to nighttime lighting, likely affect the circadian system. Most studies of these effects have focused on nocturnal rodents, which are very different from diurnal species with respect to their patterns of light exposure and the effects that light can have on their activity. Thus, the authors investigated the effect of nighttime light on behavior and the brain of a diurnal rodent, the Nile grass rat. Following 3 weeks of exposure to standard light/dark (LD; 14:10 light [~150 lux] /dark [0 lux]) or dim light at night (dLAN; 14:10 light [~150 lux] /dim [5 lux]), rats underwent behavioral testing, and hippocampal neurons within CA1, CA3, and the dentate gyrus (DG) were examined. Three behavioral effects of dLAN were observed: (1) decreased preference for a sucrose solution, (2) increased latency to float in a forced swim test, and (3) impaired learning and memory in the Barnes maze. Light at night also reduced dendritic length in DG and basilar CA1 dendrites. Dendritic length in the DG positively correlated with sucrose consumption in the sucrose anhedonia task. Nighttime light exposure did not disrupt the pattern of circadian locomotor activity, and all grass rats maintained a diurnal activity pattern. Together, these data suggest that exposure to dLAN can alter affective responses and impair cognition in a diurnal animal.
Address Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA. fonken.1@osu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes PMID:22855576 Approved no
Call Number IDA @ john @ Serial 91
Permanent link to this record
 

 
Author Orbach, D.N.; Fenton, B.
Title Vision impairs the abilities of bats to avoid colliding with stationary obstacles Type Journal Article
Year 2010 Publication PloS one Abbreviated Journal PLoS One
Volume 5 Issue 11 Pages e13912
Keywords (up) Analysis of Variance; Animals; Chiroptera/*physiology; Cyclonic Storms; Echolocation/*physiology; Female; Flight, Animal/*physiology; Light; Male; Space Perception/physiology/radiation effects; Vision, Ocular/*physiology/radiation effects; Vocalization, Animal/physiology
Abstract BACKGROUND: Free-flying insectivorous bats occasionally collide with stationary objects they should easily detect by echolocation and avoid. Collisions often occur with lighted objects, suggesting ambient light may deleteriously affect obstacle avoidance capabilities. We tested the hypothesis that free-flying bats may orient by vision when they collide with some obstacles. We additionally tested whether acoustic distractions, such as “distress calls” of other bats, contributed to probabilities of collision. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the role of visual cues in the collisions of free-flying little brown bats (Myotis lucifugus) with stationary objects, we set up obstacles in an area of high bat traffic during swarming. We used combinations of light intensities and visually dissimilar obstacles to verify that bats orient by vision. In early August, bats collided more often in the light than the dark, and probabilities of collision varied with the visibility of obstacles. However, the probabilities of collisions altered in mid to late August, coincident with the start of behavioural, hormonal, and physiological changes occurring during swarming and mating. Distress calls did not distract bats and increase the incidence of collisions. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that visual cues are more important for free-flying bats than previously recognized, suggesting integration of multi-sensory modalities during orientation. Furthermore, our study highlights differences between responses of captive and wild bats, indicating a need for more field experiments.
Address Department of Biology, University of Western Ontario, London, Ontario, Canada. dnorbach@gmail.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:21085481; PMCID:PMC2976695 Approved no
Call Number IDA @ john @ Serial 96
Permanent link to this record