toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Reddy, A.B.; O'Neill, J.S. url  doi
openurl 
  Title Healthy clocks, healthy body, healthy mind Type Journal Article
  Year 2010 Publication Trends in Cell Biology Abbreviated Journal Trends Cell Biol  
  Volume 20 Issue 1 Pages 36-44  
  Keywords (up) Aging; Animals; Cell Cycle; *Circadian Rhythm; Humans; Neoplasms/genetics/metabolism; Signal Transduction  
  Abstract Circadian rhythms permeate mammalian biology. They are manifested in the temporal organisation of behavioural, physiological, cellular and neuronal processes. Whereas it has been shown recently that these approximately 24-hour cycles are intrinsic to the cell and persist in vitro, internal synchrony in mammals is largely governed by the hypothalamic suprachiasmatic nuclei that facilitate anticipation of, and adaptation to, the solar cycle. Our timekeeping mechanism is deeply embedded in cell function and is modelled as a network of transcriptional and/or post-translational feedback loops. Concurrent with this, we are beginning to understand how this ancient timekeeper interacts with myriad cell systems, including signal transduction cascades and the cell cycle, and thus impacts on disease. An exemplary area where this knowledge is rapidly expanding and contributing to novel therapies is cancer, where the Period genes have been identified as tumour suppressors. In more complex disorders, where aetiology remains controversial, interactions with the clockwork are only now starting to be appreciated.  
  Address Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge CB2 OQQ, UK. abr20@cam.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8924 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19926479; PMCID:PMC2808409 Approved no  
  Call Number IDA @ john @ Serial 133  
Permanent link to this record
 

 
Author Stark, H.; Brown, S.S.; Wong, K.W.; Stutz, J.; Elvidge, C.D.; Pollack, I.B.; Ryerson, T.B.; Dube, W.P.; Wagner, N.L.; Parrish, D.D. url  doi
openurl 
  Title City lights and urban air Type Journal Article
  Year 2011 Publication Nature Geoscience Abbreviated Journal Nature Geosci  
  Volume 4 Issue 11 Pages 730-731  
  Keywords (up) air pollution; light pollution; light at night  
  Abstract  
  Address NOAA Earth System Research Laboratory, Chemical Sciences Division, 325 Broadway, R/CSD 7, Boulder, Colorado 80305, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1752-0894 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 270  
Permanent link to this record
 

 
Author Su, Y.; Yue, J.; Liu, X.; Miller, S.D.; Ш, W.C.S.; Smith, S.M.; Guo, D.; Guo, S. url  doi
openurl 
  Title Mesospheric Bore Observations Using Suomi-NPP VIIRS DNB during 2013–2017 Type Journal Article
  Year 2018 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 10 Issue 12 Pages 1935  
  Keywords (up) Airglow; Remote Sensing  
  Abstract This paper reports mesospheric bore events observed by Day/Night Band (DNB) of the Visible/Infrared Imaging Radiometer Suite (VIIRS) on the National Oceanic and Atmospheric Administration/National Aeronautics and Space Administration (NOAA/NASA) Suomi National Polar-orbiting Partnership (NPP) environmental satellite over five years (2013–2017). Two types of special mesospheric bore events were observed, enabled by the wide field of view of VIIRS: extremely wide bores (>2000 km extension perpendicular to the bore propagation direction), and those exhibiting more than 15 trailing crests and troughs. A mesospheric bore event observed simultaneously from space and ground was investigated in detail. DNB enables the preliminary global observation of mesospheric bores for the first time. DNB mesospheric bores occurred more frequently in March, April and May. Their typical lengths are between 300 km and 1200 km. The occurrence rate of bores at low latitudes is higher than that at middle latitudes. Among the 61 bore events, 39 events occurred in the tropical region (20°S–20°N). The high occurrence rate of mesospheric bores during the spring months in the tropical region coincides with the reported seasonal and latitudinal variations of mesospheric inversion layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2128  
Permanent link to this record
 

 
Author Holzhauer S.I.J.; Franke S.; Kyba C.C.M.; Manfrin A.; Klenke R.; Voigt C.C.; Lewanzik D.; Oehlert M.; Monaghan M.T.; Schneider S.; Heller S.; Kuechly H.; Brüning A.; Honnen A.-C.; Hölker F. url  doi
openurl 
  Title Out of the Dark: Establishing a Large-Scale Field Experiment to Assess the Effects of Artificial Light at Night on Species and Food Webs Type Journal Article
  Year 2015 Publication Sustainability Abbreviated Journal  
  Volume 7 Issue 11 Pages 15593-15616  
  Keywords (up) ALAN; artificial light at night; ecosystems; freshwater; light pollution; loss of the night; photometric characterization; riparian; Verlust der Nacht  
  Abstract Artificial light at night (ALAN) is one of the most obvious hallmarks of human presence in an ecosystem. The rapidly increasing use of artificial light has fundamentally transformed nightscapes throughout most of the globe, although little is known about how ALAN impacts the biodiversity and food webs of illuminated ecosystems. We developed a large-scale experimental infrastructure to study the effects of ALAN on a light-naïve, natural riparian (i.e., terrestrial-aquatic) ecosystem. Twelve street lights (20 m apart) arranged in three rows parallel to an agricultural drainage ditch were installed on each of two sites located in a grassland ecosystem in northern Germany. A range of biotic, abiotic, and photometric data are collected regularly to study the short- and long-term effects of ALAN on behavior, species interactions, physiology, and species composition of communities. Here we describe the infrastructure setup and data collection methods, and characterize the study area including photometric measurements. None of the measured parameters differed significantly between sites in the period before illumination. Results of one short-term experiment, carried out with one site illuminated and the other acting as a control, demonstrate the attraction of ALAN by the immense and immediate increase of insect catches at the lit street lights. The experimental setup provides a unique platform for carrying out interdisciplinary research on sustainable lighting.  
  Address Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301/310, 12587 Berlin, Germany; holzhauer(at)igb-berlin.de  
  Corporate Author Thesis  
  Publisher MDPI Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ schroer @ Serial 1305  
Permanent link to this record
 

 
Author Muheim, R.; Phillips, J.B.; Akesson, S. url  doi
openurl 
  Title Polarized light cues underlie compass calibration in migratory songbirds Type Journal Article
  Year 2006 Publication Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 313 Issue 5788 Pages 837-839  
  Keywords (up) Alaska; *Animal Migration; Animals; Calibration; Cues; *Flight, Animal; Geography; *Light; Magnetics; *Orientation; Seasons; Sparrows/*physiology; Sunlight  
  Abstract Migratory songbirds use the geomagnetic field, stars, the Sun, and polarized light patterns to determine their migratory direction. To prevent navigational errors, it is necessary to calibrate all of these compass systems to a common reference. We show that migratory Savannah sparrows use polarized light cues from the region of sky near the horizon to recalibrate the magnetic compass at both sunrise and sunset. We suggest that skylight polarization patterns are used to derive an absolute (i.e., geographic) directional system that provides the primary calibration reference for all of the compasses of migratory songbirds.  
  Address Department of Animal Ecology, Lund University, Ecology Building, SE-223 62 Lund, Sweden. rmuheim@vt.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16902138 Approved no  
  Call Number IDA @ john @ Serial 243  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: