|   | 
Details
   web
Records
Author Blask, David E; Dauchy, Robert T; Dauchy, Erin M; Mao, Lulu; Hill, Steven M; Greene, Michael W; Belancio, Victoria P; Sauer, Leonard A; Davidson, Leslie
Title Light exposure at night disrupts host/cancer circadian regulatory dynamics: Impact on the Warburg effect, lipid signaling and tumor growth prevention Type Journal Article
Year 2014 Publication PloS one Abbreviated Journal
Volume 9 Issue 8 Pages e102776
Keywords (up)
Abstract The central circadian clock within the suprachiasmatic nucleus (SCN) plays an important role in temporally organizing and coordinating many of the processes governing cancer cell proliferation and tumor growth in synchrony with the daily light/dark cycle which may contribute to endogenous cancer prevention. Bioenergetic substrates and molecular intermediates required for building tumor biomass each day are derived from both aerobic glycolysis (Warburg effect) and lipid metabolism. Using tissue-isolated human breast cancer xenografts grown in nude rats, we determined that circulating systemic factors in the host and the Warburg effect, linoleic acid uptake/metabolism and growth signaling activities in the tumor are dynamically regulated, coordinated and integrated within circadian time structure over a 24-hour light/dark cycle by SCN-driven nocturnal pineal production of the anticancer hormone melatonin. Dim light at night (LAN)-induced melatonin suppression disrupts this circadian-regulated host/cancer balance among several important cancer preventative signaling mechanisms, leading to hyperglycemia and hyperinsulinemia in the host and runaway aerobic glycolysis, lipid signaling and proliferative activity in the tumor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 1579
Permanent link to this record
 

 
Author Molcan, L; Vesela, A; Zeman, M
Title Repeated phase shifts in the lighting regimen change the blood pressure response to norepinephrine stimulation in rats Type Journal Article
Year 2014 Publication Physiological Research Abbreviated Journal Physiol. Res.
Volume 63 Issue 5 Pages 567-575
Keywords (up)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 1596
Permanent link to this record
 

 
Author Grubisic, M.; Singer, G.; Bruno, M.C.; Van Grunsven, R.H.A.; Manfrin, A.; Monaghan, M.T.; Hölker, F.
Title Artificial light at night decreases biomass and alters community composition of benthic primary producers in a sub-alpine stream Type Journal Article
Year 2017 Publication Limnology and Oceanography Abbreviated Journal
Volume Issue Pages
Keywords (up)
Abstract Artificial light at night (ALAN) is recognized as a contributor to environmental change and a biodiversity threat on a global scale. Despite its widespread use and numerous potential ecological effects, few studies have investigated the impacts on aquatic ecosystems and primary producers. Light is a source of energy and information for benthic autotrophs that form the basis of food webs in clear, shallow waters. Artificial night-time illumination may thus affect biomass and community composition of primary producers. We experimentally mimicked the light conditions of a light-polluted area (approximately 20 lux, white LED) in streamside flumes on a sub-alpine stream. We compared the biomass and community composition of periphyton grown under ALAN with periphyton grown under a natural light regime in two seasons using communities in early (up to 3 weeks) and later (4â??6 weeks) developmental stages. In early periphyton, ALAN decreased the biomass of autotrophs in both spring (57% at 3 weeks) and autumn (43% at 2 weeks), decreased the proportion of cyanobacteria in spring (54%), and altered the proportion of diatoms in autumn (11% decrease at 2 weeks and 5% increase at 3 weeks). No effects of ALAN were observed for later periphyton. Further work is needed to test whether streams with frequent physical disturbances that reset the successional development of periphyton are more affected by ALAN than streams with more stable conditions. As periphyton is a fundamental component of stream ecosystems, the impact of ALAN might propagate to higher trophic levels and/or affect critical ecosystem functions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 1735
Permanent link to this record
 

 
Author Ges, X.; Bará, S.; García-Gil, M.; Zamorano, J.; Ribas, S.J.; Masana, E.
Title Light pollution offshore: Zenithal sky glow measurements in the mediterranean coastal waters Type Journal Article
Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 210 Issue Pages 91-100
Keywords (up)
Abstract Light pollution is a worldwide phenomenon whose consequences for the natural environment and the human health are being intensively studied nowadays. Most published studies address issues related to light pollution inland. Coastal waters, however, are spaces of high environmental interest, due to their biodiversity richness and their economical significance. The elevated population density in coastal regions is accompanied by correspondingly large emissions of artificial light at night, whose role as an environmental stressor is increasingly being recognized. Characterizing the light pollution levels in coastal waters is a necessary step for protecting these areas. At the same time, the marine surface environment provides a stage free from obstacles for measuring the dependence of the skyglow on the distance to the light polluting sources, and validating (or rejecting) atmospheric light propagation models. In this work we present a proof-of-concept of a gimbal measurement system that can be used for zenithal skyglow measurements on board both small boats and large vessels under actual navigation conditions. We report the results obtained in the summer of 2016 along two measurement routes in the Mediterranean waters offshore Barcelona, travelling 9 and 31.7 km away from the coast. The atmospheric conditions in both routes were different from the ones assumed for the calculation of recently published models of the anthropogenic sky brightness. They were closer in the first route, whose results approach better the theoretical predictions. The results obtained in the second route, conducted under a clearer atmosphere, showed systematic differences that can be traced back to two expected phenomena, which are a consequence of the smaller aerosol content: the reduction of the anthropogenic sky glow at short distances from the sources, and the slower decay rate of brightness with distance, which gives rise to a relative excess of brightness at large distances from the coastline.
Address Departament de Projectes d'Enginyeria i la Construcció, Universitat Politècnica de Catalunya/BARCELONATECH, Barcelona, Spain; salva.bara(at)usc.es
Corporate Author Thesis
Publisher Elsevierier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1816
Permanent link to this record
 

 
Author Aubé, M.; Simoneau, A.
Title New features to the night sky radiance model illumina: Hyperspectral support, improved obstacles and cloud reflection Type Journal Article
Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 211 Issue Pages 25-34
Keywords (up)
Abstract Illumina is one of the most physically detailed artificial night sky brightness model to date. It has been in continuous development since 2005 [1]. In 2016–17, many improvements were made to the Illumina code including an overhead cloud scheme, an improved blocking scheme for subgrid obstacles (trees and buildings), and most importantly, a full hyperspectral modeling approach. Code optimization resulted in significant reduction in execution time enabling users to run the model on standard personal computers for some applications.

After describing the new schemes introduced in the model, we give some examples of applications for a peri-urban and a rural site both located inside the International Dark Sky reserve of Mont-Mégantic (QC, Canada).
Address Cégep de Sherbrooke, 475, rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada; martin.aube(at)cegepsherbrooke.qc.ca
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1818
Permanent link to this record