toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hiltunen, A. P., Kumpula, T., &Tykkyläinen, M. url  openurl
  Title Yövalaistuksen ja valopäästöjen alueellinen jakautuminen Type Journal Article
  Year 2018 Publication Geoinformatiikka Yhteiskunnassa Abbreviated Journal  
  Volume 130 Issue 4 Pages  
  Keywords Remote Sensing  
  Abstract Remotely-sensed night-time lights (NTL) reveal the occurrence of human development while excessive light emissions cause ecological impacts and may create human health hazards. The aim of this research is to find out the factors affecting the quantity of remotely-sensed NTLs in Finland at 2015. We also aim to unveil how much NTLs have changed in Finland from 1993 to 2012 and what is the share of NTLs for different land use types in Finland in 2015. Answers to these questions are achieved with satellite radiance data and data on spatial structure, multiple linear regression (MLR), and change-detection methods. National and regional MLR models were produced to explain NTL and to compare the suitability of this modelling approach in different regions. Radiance is explained by population density, industrial building density, and lit roads density. Surprisingly, the brightest areas in Finland seem to be in Närpiö, a rural area with low population density but where greenhouse farming is common. Based on change-detection, new light sources have emerged because of the expansion of mining and tourism industries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) Finnish Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2354  
Permanent link to this record
 

 
Author Navara, K.J.; Nelson, R.J. url  doi
openurl 
  Title The dark side of light at night: physiological, epidemiological, and ecological consequences Type Journal Article
  Year 2007 Publication Journal of Pineal Research Abbreviated Journal J Pineal Res  
  Volume 43 Issue 3 Pages 215-224  
  Keywords Animals; Biological Clocks; *Darkness; Disease; Ecology; Humans; Oxidative Stress; Work  
  Abstract Organisms must adapt to the temporal characteristics of their surroundings to successfully survive and reproduce. Variation in the daily light cycle, for example, acts through endocrine and neurobiological mechanisms to control several downstream physiological and behavioral processes. Interruptions in normal circadian light cycles and the resulting disruption of normal melatonin rhythms cause widespread disruptive effects involving multiple body systems, the results of which can have serious medical consequences for individuals, as well as large-scale ecological implications for populations. With the invention of electrical lights about a century ago, the temporal organization of the environment has been drastically altered for many species, including humans. In addition to the incidental exposure to light at night through light pollution, humans also engage in increasing amounts of shift-work, resulting in repeated and often long-term circadian disruption. The increasing prevalence of exposure to light at night has significant social, ecological, behavioral, and health consequences that are only now becoming apparent. This review addresses the complicated web of potential behavioral and physiological consequences resulting from exposure to light at night, as well as the large-scale medical and ecological implications that may result.  
  Address Department of Psychology, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA. knavara@gmail.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-3098 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17803517 Approved no  
  Call Number IDA @ john @ Serial 17  
Permanent link to this record
 

 
Author Gerrish, G.A.; Morin, J.G.; Rivers, T.J.; Patrawala, Z. url  doi
openurl 
  Title Darkness as an ecological resource: the role of light in partitioning the nocturnal niche Type Journal Article
  Year 2009 Publication Oecologia Abbreviated Journal Oecologia  
  Volume 160 Issue 3 Pages 525-536  
  Keywords Age Factors; Animals; Belize; Crustacea/*physiology; *Darkness; *Ecosystem; Feeding Behavior/physiology; Linear Models; Motor Activity/*physiology; Photoperiod; Sexual Behavior, Animal/physiology; Water Movements  
  Abstract Nocturnal behaviors that vary as a function of light intensity, either from the setting sun or the moon, are typically labeled as circadian or circalunar. Both of these terms refer to endogenous time-dependent behaviors. In contrast, the nightly reproductive and feeding behaviors of Vargula annecohenae, a bioluminescent ostracod (Arthropoda: Crustacea) fluctuate in response to light intensity, an exogenous factor that is not strictly time-dependent. We measured adult and juvenile activity of V. annecohenae throughout lunar cycles in January/February and June 2003. Overnight and nightly measurements of foraging and reproductive behavior of adult V. annecohenae indicated that activity was greatest when a critical “dark threshold” was reached and that the dark threshold for adult V. annecohenae is met when less than a third of the moon is visible or at the intensity of light 2-3 min before the start of nautical twilight when no moon is illuminated. Juvenile V. annecohenae were also nocturnally active but demonstrated little or no response to lunar illumination, remaining active even during brightly moonlit periods. In addition to light level, water velocity also influenced the behaviors of V. annecohenae, with fewer juveniles and adults actively foraging on nights when water velocity was high (>25 cm/s). Our data demonstrate that the strongest environmental factor influencing adult feeding and reproductive behaviors of V. annecohenae is the availability of time when illumination is below the critical dark threshold. This dependence on darkness for successful growth and reproduction allows us to classify darkness as a resource, in the same way that the term has been applied to time, space and temperature.  
  Address Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA. ggerrish@nd.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0029-8549 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19330516 Approved no  
  Call Number IDA @ john @ Serial 16  
Permanent link to this record
 

 
Author Kyba, C.C.M.; Ruhtz, T.; Fischer, J.; Hölker, F. url  doi
openurl 
  Title Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems Type Journal Article
  Year 2011 Publication PloS one Abbreviated Journal PLoS One  
  Volume 6 Issue 3 Pages e17307  
  Keywords Berlin; *Cities; *Ecosystem; Environmental Pollution/*adverse effects/analysis; *Light; Seasons; *Weather  
  Abstract The diurnal cycle of light and dark is one of the strongest environmental factors for life on Earth. Many species in both terrestrial and aquatic ecosystems use the level of ambient light to regulate their metabolism, growth, and behavior. The sky glow caused by artificial lighting from urban areas disrupts this natural cycle, and has been shown to impact the behavior of organisms, even many kilometers away from the light sources. It could be hypothesized that factors that increase the luminance of the sky amplify the degree of this “ecological light pollution”. We show that cloud coverage dramatically amplifies the sky luminance, by a factor of 10.1 for one location inside of Berlin and by a factor of 2.8 at 32 km from the city center. We also show that inside of the city overcast nights are brighter than clear rural moonlit nights, by a factor of 4.1. These results have important implications for choronobiological and chronoecological studies in urban areas, where this amplification effect has previously not been considered.  
  Address Institute for Space Sciences, Freie Universitat Berlin, Berlin, Germany. christopher.kyba@wew.fu-berlin.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21399694; PMCID:PMC3047560 Approved no  
  Call Number IDA @ john @ Serial 20  
Permanent link to this record
 

 
Author Kunz, T.H.; Gauthreaux, S.A.J.; Hristov, N.I.; Horn, J.W.; Jones, G.; Kalko, E.K.V.; Larkin, R.P.; McCracken, G.F.; Swartz, S.M.; Srygley, R.B.; Dudley, R.; Westbrook, J.K.; Wikelski, M. url  doi
openurl 
  Title Aeroecology: probing and modeling the aerosphere Type Journal Article
  Year 2008 Publication Integrative and Comparative Biology Abbreviated Journal Integr Comp Biol  
  Volume 48 Issue 1 Pages 1-11  
  Keywords aeroecology; light; biology  
  Abstract Aeroecology is a discipline that embraces and integrates the domains of atmospheric science, ecology, earth science, geography, computer science, computational biology, and engineering. The unifying concept that underlies this emerging discipline is its focus on the planetary boundary layer, or aerosphere, and the myriad of organisms that, in large part, depend upon this environment for their existence. The aerosphere influences both daily and seasonal movements of organisms, and its effects have both short- and long-term consequences for species that use this environment. The biotic interactions and physical conditions in the aerosphere represent important selection pressures that influence traits such as size and shape of organisms, which in turn facilitate both passive and active displacements. The aerosphere also influences the evolution of behavioral, sensory, metabolic, and respiratory functions of organisms in a myriad of ways. In contrast to organisms that depend strictly on terrestrial or aquatic existence, those that routinely use the aerosphere are almost immediately influenced by changing atmospheric conditions (e.g., winds, air density, precipitation, air temperature), sunlight, polarized light, moon light, and geomagnetic and gravitational forces. The aerosphere has direct and indirect effects on organisms, which often are more strongly influenced than those that spend significant amounts of time on land or in water. Future advances in aeroecology will be made when research conducted by biologists is more fully integrated across temporal and spatial scales in concert with advances made by atmospheric scientists and mathematical modelers. Ultimately, understanding how organisms such as arthropods, birds, and bats aloft are influenced by a dynamic aerosphere will be of importance for assessing, and maintaining ecosystem health, human health, and biodiversity.  
  Address *Center for Ecology and Conservation Biology, Department of Biology, Boston University, Boston, MA 02215, USA; Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK; Department of Experimental Ecology, University of Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany; Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820, USA; Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-1610, USA; Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA; **USDA-ARS, 1500 N. Central Avenue, Sidney, MT 59270, USA; Department of Integrative Biology, University of California, Berkeley, CA 94720, USA; USDA-ARS, 2771 F&B Road, College Station, TX 77845, USA and Department of Ecology and Evolutionary Biology, Princeton University, Princeton NJ 08544, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1540-7063 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21669768 Approved no  
  Call Number IDA @ john @ Serial 19  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: