toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kamrowski, R.; Limpus, C.; Moloney, J.; Hamann, M. url  doi
openurl 
  Title Coastal light pollution and marine turtles: assessing the magnitude of the problem Type Journal Article
  Year 2012 Publication Endangered Species Research Abbreviated Journal Endang. Species. Res.  
  Volume 19 Issue 1 Pages 85-98  
  Keywords Artificial light; Orientation; Coastal development; GIS analysis; Vulnerability assessment; turtles; reptiles; animals; marine turtles; Australia; Queensland  
  Abstract Globally significant numbers of marine turtles nest on Australian beaches; however, the human population of Australia is also heavily concentrated around coastal areas. Coastal development brings with it increases in artificial light. Since turtles are vulnerable to disorientation from artificial light adjacent to nesting areas, the mitigation of disruption caused by light pollution has become an important component of marine turtle conservation strategies in Australia. However, marine turtles are faced with a multitude of anthropogenic threats and managers need to prioritise impacts to ensure limited conservation resources can result in adequate protection of turtles. Knowledge of the extent to which nesting areas may be vulnerable to light pollution is essential to guide management strategies. We use geographical information system analysis to over-lay turtle nesting data onto night-time lights data produced by the NOAA National Geophysical Data Center, to assess the proportion of marine turtles in Australia potentially at risk from light pollution. We also identify the Australian nesting sites which may face the greatest threat from artificial light. Our assessment indicates that the majority of nesting turtles appear to be at low risk, but population management units in Western Australia and Queensland are vulnerable to light pollution. The risk to turtles from light generated by industrial developments appears significantly higher than at any other location. Consequently, managers of turtle management units in regions of proposed or on-going industrial development should anticipate potentially disrupted turtle behaviour due to light pollution. Our methodology will be useful to managers of turtles elsewhere.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1863-5407 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 74  
Permanent link to this record
 

 
Author Fritsches, K.A. url  doi
openurl 
  Title Australian Loggerhead sea turtle hatchlings do not avoid yellow Type Journal Article
  Year 2012 Publication Marine and Freshwater Behaviour and Physiology Abbreviated Journal Marine and Freshwater Behaviour and Physiology  
  Volume 45 Issue 2 Pages 79-89  
  Keywords Flatback turtle; Natator depressus; animals; reptiles; marine turtles; turtles; Loggerhead turtle; Caretta caretta  
  Abstract When emerging from the nest, sea turtle hatchlings primarily orient using visual stimuli, with light pollution known to disrupt effective sea localization behavior. Previous studies have shown that sea turtle hatchlings respond differently to different wavelengths of light but Loggerhead hatchlings, exclusively among species tested, have a strong aversion to yellow light (at 600 nm). This study repeats these experiments with an Australian population of Loggerhead hatchlings (Caretta caretta) and Flatback hatchlings (Natator depressus). The orientation preference was measured using a modified y-maze set-up with the animals response observed using an infrared camera. This study showed that both Loggerhead and Flatback hatchlings can see and are attracted to light in the ultraviolet waveband (365 nm) and, to a lesser extent to longer wavelengths of 600 nm and above. The surprising finding was that the Loggerhead hatchlings tested here, unlike their conspecifics in Florida, do not show any avoidance to yellow but are attracted to bright lights of wavelength between 365 nm (UV) and 600 nm. This suggests potential differences in the visual behavior among different populations of sea turtles of the same species. No difference was detected in the response of Loggerhead hatchlings to flickering or steady light stimuli.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1023-6244 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 75  
Permanent link to this record
 

 
Author Zheleva, M. url  doi
openurl 
  Title The dark side of light. Light pollution kills leatherback turtle hatchlings Type Journal Article
  Year 2012 Publication Biodiscovery Abbreviated Journal Biodiscovery  
  Volume 3 Issue Pages e8930  
  Keywords Leatherback turtle; animals; reptiles; turtles; marine turtles; light pollution; Tobago  
  Abstract The leatherback turtle is the largest and most migratory of all sea turtles and deepest diving air-breathing animal. It has unique physiology which allows it to adapt to various habitats ranging from sub-polar to equatorial during its migrations. The leatherback turtle is also the only sea turtle where no cases of tumours have been diagnosed. These unique features add to the arguments for preservation of this endangered species. Here we discuss the effect of light pollution on leatherback turtle hatchlings in Tobago and the measures for their protection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-2966 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 76  
Permanent link to this record
 

 
Author Lorne, J.; Salmon, M. url  doi
openurl 
  Title Effects of exposure to artificial lighting on orientation of hatchling sea turtles on the beach and in the ocean Type Journal Article
  Year 2007 Publication Endangered Species Research Abbreviated Journal Endang. Species Res.  
  Volume 3 Issue Pages 23-30  
  Keywords Sea-finding · Orientation; Migration; Sea turtle; Loggerhead turtle; Caretta caretta; Photopollution; animals; turtles; marine turtles; reptiles  
  Abstract Artificial lighting disrupts sea turtle hatchling orientation from the nest to the sea. We studied how a light-induced landward crawl affects the later ability of hatchlings to crawl to the sea, and to swim away from the shore from a dark beach. A brief (2 min) landward crawl had no effect on swimming orientation as long as surface waves were present. In a calm sea, landward-crawling hatchlings failed to swim offshore, while those crawling seaward were well oriented. A long (2 h) crawl toward a landward light source, however, impaired the ability of hatchlings to crawl seaward. These results demonstrate that orientation toward artificial light sources compromises the ability of hatchlings to respond to natural orientation cues, both on land and in the sea. Based on these results, we suggest several changes to current management practices used when releasing misoriented turtles in the wild.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1863-5407 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 77  
Permanent link to this record
 

 
Author Sella, K.N.; Salmon, M.; Witherington, B.E. url  doi
openurl 
  Title Filtered Streetlights Attract Hatchling Marine Turtles Type Journal Article
  Year 2006 Publication Chelonian Conservation and Biology Abbreviated Journal Chelonian Conservation and Biology  
  Volume 5 Issue 2 Pages 255-261  
  Keywords Reptilia; Testudines; Cheloniidae; Loggerhead turtle; turtles; marine turtles; reptiles; Caretta caretta; Chelonia mydas; hatchlings; artificial lighting; light “trapping”; orientation; seafinding; Florida  
  Abstract On many nesting beaches, hatchling marine turtles are exposed to poled street lighting that disrupts their ability to crawl to the sea. Experiments were done to determine how hatchlings responded to street lighting transmitted through 2 filters that excluded the most disruptive wavelengths (those <&#8201;530 nm; those <&#8201;570 nm). Filtered lighting, however, also attracted the turtles though not as strongly as an unfiltered (high-pressure sodium vapor) lighting. Filtering is therefore of limited utility for light management, especially since other alternatives (such as lowering, shielding, or turning off unnecessary lighting; use of dimmer lights embedded in roadways) are more effective.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1071-8443 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 78  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: