|   | 
Details
   web
Records
Author Lowden, A.; Ozturk, G.; Reynolds, A.; Bjorvatn, B.
Title Working Time Society consensus statements: Evidence based interventions using light to improve circadian adaptation to working hours Type Journal Article
Year 2019 Publication Industrial Health Abbreviated Journal Ind Health
Volume in press Issue Pages
Keywords Human Health; Review
Abstract Interventions and strategies to improve health through the management of circadian (re)adaptation have been explored in the field, and in both human and animal laboratory manipulations of shiftwork. As part of an initiative by the Working Time Society (WTS) and International Committee on Occupational Health (ICOH), this review summarises the literature on the management of circadian (re)adaption using bright light treatment. Recommendations to maximise circadian adaptation are summarised for practitioners based on a variety of shiftwork schedules. In slowly rotating night shift schedules bright light appears most suitable when used in connection with the first three night shifts. These interventions are improved when combined with orange glasses (to block blue-green light exposure) for the commute home. Non-shifting strategies involve a lower dosage of light at night and promoting natural daylight exposure during the day (also recommended for day shifts) in acordance with the phase and amplitude response curves to light in humans.
Address Department of Global Public Health and Primary Care, University of Bergen, Norway
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0019-8366 ISBN Medium
Area Expedition Conference
Notes (down) PMID:30700675 Approved no
Call Number GFZ @ kyba @ Serial 2208
Permanent link to this record
 

 
Author Prayag, A.S.; Najjar, R.P.; Gronfier, C.
Title Melatonin suppression is exquisitely sensitive to light and primarily driven by melanopsin in humans Type Journal Article
Year 2019 Publication Journal of Pineal Research Abbreviated Journal J Pineal Res
Volume in press Issue Pages
Keywords Human Health
Abstract INTRODUCTION: Light elicits a range of non-visual responses in humans. Driven predominantly by intrinsically photosensitive retinal ganglion cells (ipRGCs), but also by rods and/or cones, these responses include melatonin suppression. A sigmoidal relationship has been established between melatonin suppression and light intensity, however photoreceptoral involvement remains unclear. METHODS AND RESULTS: In this study, we first modelled the relationships between alpha-opic illuminances and melatonin suppression using an extensive dataset by Brainard and colleagues. Our results show that 1) melatonin suppression is better predicted by melanopic illuminance compared to other alpha-opic illuminances, 2) melatonin suppression is predicted to occur at levels as low as ~1.5 melanopic lux (melanopsin-weighted irradiance 0.2 muW/cm(2)), 3) saturation occurs at 305 melanopic lux (melanopsin-weighted irradiance 36.6 muW/cm(2)). We then tested this melanopsin-weighted illuminance response model derived from Brainard and colleagues' data and show that it predicts equally well melatonin suppression data from our laboratory, although obtained using different intensities and exposure duration. DISCUSSION: Together, our findings suggest that melatonin suppression by monochromatic lights is predominantly driven by melanopsin, and that it can be initiated at extremely low melanopic lux levels in experimental conditions. This emphasizes the concern of the non-visual impacts of low light intensities in lighting design and light-emitting devices. This article is protected by copyright. All rights reserved.
Address Lyon Neuroscience Research Center, Integrative Physiology of the Brain Arousal Systems, Waking team, Inserm UMRS 1028, CNRS UMR 5292, Universite Claude Bernard Lyon 1, Universite de Lyon, F-69000, Lyon, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-3098 ISBN Medium
Area Expedition Conference
Notes (down) PMID:30697806 Approved no
Call Number GFZ @ kyba @ Serial 2186
Permanent link to this record
 

 
Author Manriquez, P.H.; Jara, M.E.; Diaz, M.I.; Quijon, P.A.; Widdicombe, S.; Pulgar, J.; Manriquez, K.; Quintanilla-Ahumada, D.; Duarte, C.
Title Artificial light pollution influences behavioral and physiological traits in a keystone predator species, Concholepas concholepas Type Journal Article
Year 2019 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ
Volume 661 Issue Pages 543-552
Keywords Animals
Abstract Artificial Light At Night (ALAN) is an increasing global problem that, despite being widely recognized in terrestrial systems, has been studied much less in marine habitats. In this study we investigated the effect of ALAN on behavioral and physiological traits of Concholepas concholepas, an important keystone species of the south-eastern Pacific coast. We used juveniles collected in intertidal habitats that had not previously been exposed to ALAN. In the laboratory we exposed them to two treatments: darkness and white LED (Lighting Emitting Diodes) to test for the impacts of ALAN on prey-searching behavior, self-righting time and metabolism. In the field, the distribution of juveniles was observed during daylight-hours to determine whether C. concholepas preferred shaded or illuminated microhabitats. Moreover, we compared the abundance of juveniles collected during day- and night-time hours. The laboratory experiments demonstrated that juveniles of C. concholepas seek out and choose their prey more efficiently in darkened areas. White LED illuminated conditions increased righting times and metabolism. Field surveys indicated that, during daylight hours, juveniles were more abundant in shaded micro-habitats than in illuminated ones. However, during darkness hours, individuals were not seen to aggregate in any particular microhabitats. We conclude that the exposure to ALAN might disrupt important behavioral and physiological traits of small juveniles in this species which, as a mechanism to avoid visual predators, are mainly active at night. It follows that ALAN in coastal areas might modify the entire community structure of intertidal habitats by altering the behavior of this keystone species.
Address Departamento de Ecologia y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes (down) PMID:30682607 Approved no
Call Number GFZ @ kyba @ Serial 2213
Permanent link to this record
 

 
Author Franklin, M.; Chau, K.; Cushing, L.J.; Johnston, J.
Title Characterizing flaring from unconventional oil and gas operations in south Texas using satellite observations Type Journal Article
Year 2019 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol
Volume in press Issue Pages
Keywords Remote Sensing
Abstract Over the past decade, increases in high-volume hydraulic fracturing for oil and gas extraction in the United States have raised concerns with residents living near wells. Flaring, or the combustion of petroleum products into the open atmosphere, is a common practice associated with oil and gas exploration and production, and has been under-examined as a potential source of exposure. We leveraged data from the Visible Infrared Imaging Spectroradiometer (VIIRS) Nightfire satellite product to characterize the extent of flaring in the Eagle Ford Shale region of south Texas, one of the most productive in the nation. Spatiotemporal hierarchical clustering identified flaring sources, and a regression-based approach combining VIIRS information with reported estimates of vented and flared gas from the Railroad Commission of Texas enabled estimation of flared gas volume at each flare. We identified 43,887 distinct oil and gas flares in the study region from 2012-2016, with a peak in activity in 2014 and an estimated 4.5 billion cubic meters of total gas volume flared over the study period. A comparison with well permit data indicated the majority of flares were associated with oil-producing (82%) and horizontally-drilled (92%) wells. Of the 49 counties in the region, 5 accounted for 71% of the total flaring. Our results suggest flaring may be a significant environmental exposure in parts of this region.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936X ISBN Medium
Area Expedition Conference
Notes (down) PMID:30657671 Approved no
Call Number GFZ @ kyba @ Serial 2175
Permanent link to this record
 

 
Author Mireku, M.O.; Barker, M.M.; Mutz, J.; Dumontheil, I.; Thomas, M.S.C.; Roosli, M.; Elliott, P.; Toledano, M.B.
Title Night-time screen-based media device use and adolescents' sleep and health-related quality of life Type Journal Article
Year 2019 Publication Environment International Abbreviated Journal Environ Int
Volume 124 Issue Pages 66-78
Keywords Human Health
Abstract OBJECTIVE: The present study investigates the relationship between night-time screen-based media devices (SBMD) use, which refers to use within 1h before sleep, in both lit and dark rooms, and sleep outcomes and health-related quality of life (HRQoL) among 11 to 12-year-olds. METHODS: We analysed baseline data from a large cohort of 6616 adolescents from 39 schools in and around London, United Kingdom, participating in the Study of Cognition Adolescents and Mobile Phone (SCAMP). Adolescents self-reported their use of any SBMD (mobile phone, tablet, laptop, television etc.). Sleep variables were derived from self-reported weekday and/or weekend bedtime, sleep onset latency (SOL) and wake time. Sleep quality was assessed using four standardised dimensions from the Swiss Health Survey. HRQoL was estimated using the KIDSCREEN-10 questionnaire. RESULTS: Over two-thirds (71.5%) of adolescents reported using at least one SBMD at night-time, and about a third (32.2%) reported using mobile phones at night-time in darkness. Night-time mobile phone and television use was associated with higher odds of insufficient sleep duration on weekdays (Odds Ratio, OR=1.82, 95% Confidence Interval, CI [1.59, 2.07] and OR=1.40, 95% CI [1.23, 1.60], respectively). Adolescents who used mobile phones in a room with light were more likely to have insufficient sleep (OR=1.32, 95% CI [1.10, 1.60]) and later sleep midpoint (OR=1.64, 95% CI [1.37, 1.95]) on weekends compared to non-users. The magnitude of these associations was even stronger for those who used mobile phones in darkness for insufficient sleep duration on weekdays (OR=2.13, 95% CI [1.79, 2.54]) and for later sleep midpoint on weekdays (OR=3.88, 95% CI [3.25, 4.62]) compared to non-users. Night-time use of mobile phones was associated with lower HRQoL and use in a dark room was associated with even lower KIDSCREEN-10 score (beta=-1.18, 95% CI [-1.85, -0.52]) compared to no use. CONCLUSIONS: We found consistent associations between night-time SBMD use and poor sleep outcomes and worse HRQoL in adolescents. The magnitude of these associations was stronger when SBMD use occurred in a dark room versus a lit room.
Address MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, UK; National Institute for Health Research Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London, a Partnership with Public Health England, and collaboration with Imperial College London, W2 1PG, UK. Electronic address: m.toledano@imperial.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0160-4120 ISBN Medium
Area Expedition Conference
Notes (down) PMID:30640131 Approved no
Call Number GFZ @ kyba @ Serial 2181
Permanent link to this record