|   | 
Details
   web
Records
Author Cinzano, P.; Elvidge, C.D.
Title Night sky brightness at sites from DMSP-OLS satellite measurements Type Journal Article
Year 2004 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS
Volume 353 Issue 4 Pages 1107-1116
Keywords scattering; atmospheric effects; light pollution; site testing; GTOPO30; DMSP
Abstract We apply the sky brightness modelling technique introduced and developed by Roy Garstang to high-resolution satellite measurements of upward artificial light flux carried out with the US Air Force Defense Meteorological Satellite Program Operational Linescan System and to GTOPO30 (a global digital elevation model by the US Geological Survey's EROS Data Centre) digital elevation data in order to predict the brightness distribution of the night sky at a given site in the primary astronomical photometric bands for a range of atmospheric aerosol contents. This method, based on global data and accounting for elevation, Earth curvature and mountain screening, allows the evaluation of sky glow conditions over the entire sky for any site in the world, to evaluate its evolution, to disentangle the contribution of individual sources in the surrounding territory and to identify the main contributing sources. Sky brightness, naked eye stellar visibility and telescope limiting magnitude are produced as three-dimensional arrays, the axes of which are the position on the sky and the atmospheric clarity. We compare our results with available measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number IDA @ john @ Serial 172
Permanent link to this record
 

 
Author Cinzano, P.; Falchi, F.; Elvidge, C.D.
Title The first World Atlas of the artificial night sky brightness Type Journal Article
Year 2001 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS
Volume 328 Issue 3 Pages 689-707
Keywords scattering; atmospheric effects; light pollution; site testing; DMSP
Abstract We present the first World Atlas of the zenith artificial night sky brightness at sea level. Based on radiance-calibrated high-resolution DMSP satellite data and on accurate modelling of light propagation in the atmosphere, it provides a nearly global picture of how mankind is proceeding to envelop itself in a luminous fog. Comparing the Atlas with the United States Department of Energy (DOE) population density data base, we determined the fraction of population who are living under a sky of given brightness. About two-thirds of the World population and 99 per cent of the population in the United States (excluding Alaska and Hawaii) and European Union live in areas where the night sky is above the threshold set for polluted status. Assuming average eye functionality, about one-fifth of the World population, more than two-thirds of the United States population and more than one half of the European Union population have already lost naked eye visibility of the Milky Way. Finally, about one-tenth of the World population, more than 40 per cent of the United States population and one sixth of the European Union population no longer view the heavens with the eye adapted to night vision, because of the sky brightness.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number IDA @ john @ Serial 173
Permanent link to this record
 

 
Author Cinzano, P.; Falchi, F.; Elvidge, C.D.
Title Moonlight Without The Moon Type Journal Article
Year 1998 Publication Earth, Moon, and Planets Abbreviated Journal
Volume 85/86 Issue Pages 517-522
Keywords
Abstract Light pollution, the alteration of the natural light levels in the night environment produced by man-made light, is one of the most rapidly increasing threats to the natural environment. The fast growth of the night sky brightness due to light pollution not only is damaging the perception of the starry sky but it is silently altering even the perception of the moonlight nights by mankind. The cyclic alternation between the new Moon's dark sky with thousand of stars and the moonlight sky, less dark but always full of stars among which our satellite moves, is rapidly changing toward a perennial artificial moonlight due to the man-made light wasted in the atmosphere. The Moon periodically will appear inside the same perennially luminous sky from which stars will have almost disappeared. Here we present a map showing artificial moonlight levels in North America and some statistical results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-9295 ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number IDA @ john @ Serial 174
Permanent link to this record
 

 
Author Cinzano, P.; Falchi, F.; Elvidge, C.D.
Title Naked-eye star visibility and limiting magnitude mapped from DMSP-OLS satellite data Type Journal Article
Year 2001 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Monthly Notices of the Royal Astronomical Society
Volume 323 Issue 1 Pages 34-46
Keywords light at night; remote sensing; GTOPO30; DMSP; light pollution; modeling; mapping
Abstract We extend the method introduced by Cinzano et al. (2000a) to map the artificial sky brightness in large territories from DMSP satellite data, in order to map the naked eye star visibility and telescopic limiting magnitudes. For these purposes we take into account the altitude of each land area from GTOPO30 world elevation data, the natural sky brightness in the chosen sky direction, based on Garstang modelling, the eye capability with naked eye or a telescope, based on the Schaefer (1990) and Garstang (2000b) approach, and the stellar extinction in the visual photometric band. For near zenith sky directions we also take into account screening by terrain elevation. Maps of naked eye star visibility and telescopic limiting magnitudes are useful to quantify the capability of the population to perceive our Universe, to evaluate the future evolution, to make cross correlations with statistical parameters and to recognize areas where astronomical observations or popularisation can still acceptably be made. We present, as an application, maps of naked eye star visibility and total sky brightness in V band in Europe at the zenith with a resolution of approximately 1 km.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number IDA @ john @ Serial 175
Permanent link to this record
 

 
Author Horvath, H.
Title Basic optics, aerosol optics, and the role of scattering for sky radiance Type Journal Article
Year 2014 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 139 Issue Pages 3-12
Keywords Light extinction; Scattering function; Atmospheric radiance; Ground reflectivity; Color effects
Abstract The radiance of the night sky is determined by the available light and the scattering properties of the atmosphere (particles and gases). The scattering phase function of the aerosol has a strong dependence on the scattering angle, and depending on the viewing direction different parts of the atmosphere and the ground reflectivity give the most important contribution. The atmospheric radiance cannot be altered by optical instruments. On the other hand the light flux of a distant star increases with the size of the telescope, thus fainter stars become visible. Light extinction, scattering function, atmospheric radiance, ground reflectivity, color effects and others are discussed in detail and a simple theoretical treatment is given.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number IDA @ john @ Serial 176
Permanent link to this record