toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bedrosian, T.A.; Fonken, L.K.; Nelson, R.J. url  doi
openurl 
  Title Endocrine Effects of Circadian Disruption Type Journal Article
  Year 2015 Publication (up) Annual Review of Physiology Abbreviated Journal Annu Rev Physiol  
  Volume 78 Issue Pages 109-131  
  Keywords Health  
  Abstract Disruption of circadian rhythms, provoked by artificial lighting at night, inconsistent sleep-wake schedules, and transmeridian air travel, is increasingly prevalent in modern society. Desynchrony of biological rhythms from environmental light cycles has dramatic consequences for human health. In particular, disrupting homeostatic oscillations in endocrine tissues and the hormones that these tissues regulate can have cascading effects on physiology and behavior. Accumulating evidence suggests that chronic disruption of circadian organization of endocrine function may lead to metabolic, reproductive, sleep, and mood disorders. This review discusses circadian control of endocrine systems and the consequences of distorting rhythmicity of these systems. Expected final online publication date for the Annual Review of Physiology Volume 78 is February 10, 2016. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.  
  Address Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0066-4278 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:26208951 Approved no  
  Call Number LoNNe @ kyba @ Serial 1231  
Permanent link to this record
 

 
Author Chaves, I.; Pokorny, R.; Byrdin, M.; Hoang, N.; Ritz, T.; Brettel, K.; Essen, L.-O.; van der Horst, G.T.J.; Batschauer, A.; Ahmad, M. url  doi
openurl 
  Title The cryptochromes: blue light photoreceptors in plants and animals Type Journal Article
  Year 2011 Publication (up) Annual Review of Plant Biology Abbreviated Journal Annu Rev Plant Biol  
  Volume 62 Issue Pages 335-364  
  Keywords Adenosine Triphosphate/metabolism; Animals; Cryptochromes/chemistry/classification/*physiology; DNA Repair; Deoxyribodipyrimidine Photo-Lyase/chemistry/classification/physiology; Homing Behavior; Insects/physiology; *Light Signal Transduction; Magnetics; Mice; Oxidation-Reduction; Phosphorylation/physiology; Plants/*metabolism; blue light  
  Abstract Cryptochromes are flavoprotein photoreceptors first identified in Arabidopsis thaliana, where they play key roles in growth and development. Subsequently identified in prokaryotes, archaea, and many eukaryotes, cryptochromes function in the animal circadian clock and are proposed as magnetoreceptors in migratory birds. Cryptochromes are closely structurally related to photolyases, evolutionarily ancient flavoproteins that catalyze light-dependent DNA repair. Here, we review the structural, photochemical, and molecular properties of cry-DASH, plant, and animal cryptochromes in relation to biological signaling mechanisms and uncover common features that may contribute to better understanding the function of cryptochromes in diverse systems including in man.  
  Address Department of Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands. i.chaves@erasmusmc.nl  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1543-5008 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21526969 Approved no  
  Call Number IDA @ john @ Serial 341  
Permanent link to this record
 

 
Author Krause, G.H.; Weis, E. url  doi
openurl 
  Title Chlorophyll Fluorescence and Photosynthesis: The Basics Type Journal Article
  Year 1991 Publication (up) Annual Review of Plant Physiology and Plant Molecular Biology Abbreviated Journal Annu. Rev. Plant. Physiol. Plant. Mol. Biol.  
  Volume 42 Issue 1 Pages 313-349  
  Keywords Plants  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1040-2519 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 654  
Permanent link to this record
 

 
Author David, A.; Smet, K.A.G.; Whitehead, L. url  doi
openurl 
  Title Methods for Assessing Quantity and Quality of Illumination Type Journal Article
  Year 2019 Publication (up) Annual Review of Vision Science Abbreviated Journal Annu Rev Vis Sci  
  Volume 5 Issue Pages 479-502  
  Keywords Vision; Review; Photometry; Colorimetry  
  Abstract Human vision provides useful information about the shape and color of the objects around us. It works well in many, but not all, lighting conditions. Since the advent of human-made light sources, it has been important to understand how illumination affects vision quality, but this has been surprisingly difficult. The widespread introduction of solid-state light emitters has increased the urgency of this problem. Experts still debate how lighting can best enable high-quality vision-a key issue since about one-fifth of global electrical power production is used to make light. Photometry, the measurement of the visual quantity of light, is well established, yet significant uncertainties remain. Colorimetry, the measurement of color, has achieved good reproducibility, but researchers still struggle to understand how illumination can best enable high-quality color vision. Fortunately, in recent years, considerable progress has been made. Here, we summarize the current understanding and discuss key areas for future study.  
  Address Department of Physics and Astronomy, University of British Columbia, Vancouver BC V6T 1Z1, Canada; email: lorne.whitehead@ubc.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2374-4642 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31226013 Approved no  
  Call Number GFZ @ kyba @ Serial 2576  
Permanent link to this record
 

 
Author Mark A. Suckow, William R. Wolter and Giles E. Duffield url  openurl
  Title The Impact of Environmental Light Intensity on Experimental Tumor Growth Type Journal Article
  Year 2017 Publication (up) Anticancer Research Abbreviated Journal  
  Volume 37 Issue 9 Pages 4967-4971  
  Keywords Animals  
  Abstract Background/Aim: Cancer research requires for consistent models that minimize environmental variables. Within the typical laboratory animal housing facility, animals may be exposed to varying intensities of light as a result of cage type, cage position, light source, and other factors; however, studies evaluating the differential effect of light intensity during the light phase on tumor growth are lacking. Materials and Methods: The effect of cage face light intensity, as determined by cage rack position was evaluated with two tumor models using the C57Bl/6NHsd mouse and transplantable B16F10 melanoma cells or Lewis lung carcinoma (LLC) cells. Animals were housed in individually-ventilated cages placed at the top, middle, or bottom of the rack in a diagonal pattern so that the top cage was closest to the ceiling light source, and cage face light intensity was measured. Following a two-week acclimation period at the assigned cage position, animals were subcutaneously administered either 1.3×106 B16F10 melanoma cells or 2.5×105 Lewis lung carcinoma cells. Weights of excised tumors were measured following euthanasia 18 days (melanoma) or 21 days (LCC) after tumor cell administration. Results: Cage face light intensity was significantly different depending on the location of the cage, with cages closest to the light source have the greatest intensity. Mean tumor weights were significantly less (p<0.001 for melanoma; p&#8804;0.01 for LCC) in middle light intensity mice compared to high and low light intensity mice. Conclusion: The environmental light intensity to which experimental animals are exposed may vary markedly with cage location and can significantly influence experimental tumor growth, thus supporting the idea that light intensity should be controlled as an experimental variable for animals used in cancer research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1749  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: