|   | 
Details
   web
Records
Author Chellappa, S.L.; Steiner, R.; Blattner, P.; Oelhafen, P.; Gotz, T.; Cajochen, C.
Title Non-visual effects of light on melatonin, alertness and cognitive performance: can blue-enriched light keep us alert? Type Journal Article
Year 2011 Publication PloS one Abbreviated Journal PLoS One
Volume 6 Issue 1 Pages e16429
Keywords Circadian Rhythm/radiation effects; Cognition/*radiation effects; Color; Cross-Over Studies; Fluorescence; Humans; *Light; Male; Melatonin/*radiation effects; Reaction Time/*radiation effects; Young Adult; blue light
Abstract BACKGROUND: Light exposure can cascade numerous effects on the human circadian process via the non-imaging forming system, whose spectral relevance is highest in the short-wavelength range. Here we investigated if commercially available compact fluorescent lamps with different colour temperatures can impact on alertness and cognitive performance. METHODS: Sixteen healthy young men were studied in a balanced cross-over design with light exposure of 3 different light settings (compact fluorescent lamps with light of 40 lux at 6500K and at 2500K and incandescent lamps of 40 lux at 3000K) during 2 h in the evening. RESULTS: Exposure to light at 6500K induced greater melatonin suppression, together with enhanced subjective alertness, well-being and visual comfort. With respect to cognitive performance, light at 6500K led to significantly faster reaction times in tasks associated with sustained attention (Psychomotor Vigilance and GO/NOGO Task), but not in tasks associated with executive function (Paced Visual Serial Addition Task). This cognitive improvement was strongly related with attenuated salivary melatonin levels, particularly for the light condition at 6500K. CONCLUSIONS: Our findings suggest that the sensitivity of the human alerting and cognitive response to polychromatic light at levels as low as 40 lux, is blue-shifted relative to the three-cone visual photopic system. Thus, the selection of commercially available compact fluorescent lights with different colour temperatures significantly impacts on circadian physiology and cognitive performance at home and in the workplace.
Address Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:21298068; PMCID:PMC3027693 Approved no
Call Number IDA @ john @ Serial 286
Permanent link to this record
 

 
Author West, K.E.; Jablonski, M.R.; Warfield, B.; Cecil, K.S.; James, M.; Ayers, M.A.; Maida, J.; Bowen, C.; Sliney, D.H.; Rollag, M.D.; Hanifin, J.P.; Brainard, G.C.
Title Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans Type Journal Article
Year 2011 Publication Journal of Applied Physiology (Bethesda, Md. : 1985) Abbreviated Journal J Appl Physiol (1985)
Volume 110 Issue 3 Pages 619-626
Keywords Circadian Rhythm/*physiology/*radiation effects; Color; Dose-Response Relationship, Radiation; Humans; Lighting/*methods; Melatonin/*blood; Metabolic Clearance Rate/radiation effects; Photic Stimulation/*methods; Radiation Dosage; Retina/*physiology/*radiation effects; Semiconductors; Young Adult; blue light
Abstract Light suppresses melatonin in humans, with the strongest response occurring in the short-wavelength portion of the spectrum between 446 and 477 nm that appears blue. Blue monochromatic light has also been shown to be more effective than longer-wavelength light for enhancing alertness. Disturbed circadian rhythms and sleep loss have been described as risk factors for astronauts and NASA ground control workers, as well as civilians. Such disturbances can result in impaired alertness and diminished performance. Prior to exposing subjects to short-wavelength light from light-emitting diodes (LEDs) (peak lambda = 469 nm; 1/2 peak bandwidth = 26 nm), the ocular safety exposure to the blue LED light was confirmed by an independent hazard analysis using the American Conference of Governmental Industrial Hygienists exposure limits. Subsequently, a fluence-response curve was developed for plasma melatonin suppression in healthy subjects (n = 8; mean age of 23.9 +/- 0.5 years) exposed to a range of irradiances of blue LED light. Subjects with freely reactive pupils were exposed to light between 2:00 and 3:30 AM. Blood samples were collected before and after light exposures and quantified for melatonin. The results demonstrate that increasing irradiances of narrowband blue-appearing light can elicit increasing plasma melatonin suppression in healthy subjects (P < 0.0001). The data were fit to a sigmoidal fluence-response curve (R(2) = 0.99; ED(50) = 14.19 muW/cm(2)). A comparison of mean melatonin suppression with 40 muW/cm(2) from 4,000 K broadband white fluorescent light, currently used in most general lighting fixtures, suggests that narrow bandwidth blue LED light may be stronger than 4,000 K white fluorescent light for suppressing melatonin.
Address Dept. of Neurology, Thomas Jefferson Univ., Philadelphia, Pennsylvania 19107, USA
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0161-7567 ISBN Medium
Area Expedition Conference
Notes PMID:21164152 Approved no
Call Number IDA @ john @ Serial 287
Permanent link to this record
 

 
Author Landers, J.A.; Tamblyn, D.; Perriam, D.
Title Effect of a blue-light-blocking intraocular lens on the quality of sleep Type Journal Article
Year 2009 Publication Journal of Cataract and Refractive Surgery Abbreviated Journal J Cataract Refract Surg
Volume 35 Issue 1 Pages 83-88
Keywords Aged; Aged, 80 and over; Circadian Rhythm/physiology; Female; Humans; *Lens Implantation, Intraocular; *Lenses, Intraocular; Light; Male; *Phacoemulsification; Prosthesis Design; Questionnaires; Sleep/*physiology; blue light; sleep
Abstract PURPOSE: To evaluate whether implantation of a blue-light-blocking intraocular lens (IOL) affects sleep quality. SETTING: Repatriation General Hospital, Adelaide, Australia. METHODS: This study comprised patients who had bilateral cataract surgery during the preceding 12 months with implantation of a conventional SI40NB IOL or an AcrySof Natural SN60WF blue-light-blocking IOL. Patients were contacted by telephone at least 6 months after second-eye surgery, and the Pittsburgh Sleep Quality Index (PSQI) questionnaire was administered. Results were compared between groups. RESULTS: Of the 49 patients, 31 received conventional IOLs and 18, blue-light-blocking IOLs. The mean age of the patients was 80 years +/- 8.1 (SD). The median PSQI score was 6 (interquartile range 3 to 8). There were no statistically significant differences in PSQI scores between the 2 IOL groups (P = .65). This remained true after adjustment for sex, age, medication, and time since surgery. CONCLUSION: The blue-light-blocking IOL had no effect on the sleep quality of patients, indicating that these IOLs might serve as an alternative to conventional IOLs without a detrimental effect on circadian rhythm.
Address Department of Ophthalmology, Repatriation General Hospital, Adelaide, Australia. john.landers@bigpond.com
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0886-3350 ISBN Medium
Area Expedition Conference
Notes PMID:19101429 Approved no
Call Number IDA @ john @ Serial 288
Permanent link to this record
 

 
Author Smith, M.R.; Revell, V.L.; Eastman, C.I.
Title Phase advancing the human circadian clock with blue-enriched polychromatic light Type Journal Article
Year 2009 Publication Sleep Medicine Abbreviated Journal Sleep Med
Volume 10 Issue 3 Pages 287-294
Keywords Adult; Circadian Rhythm/*radiation effects; Female; Humans; *Light; Lighting/*methods; Male; Melatonin/metabolism; Phototherapy/*methods; Sleep; Wakefulness; Young Adult; blue light; sleep
Abstract BACKGROUND: Previous studies have shown that the human circadian system is maximally sensitive to short-wavelength (blue) light. Whether this sensitivity can be utilized to increase the size of phase shifts using light boxes and protocols designed for practical settings is not known. We assessed whether bright polychromatic lamps enriched in the short-wavelength portion of the visible light spectrum could produce larger phase advances than standard bright white lamps. METHODS: Twenty-two healthy young adults received either a bright white or bright blue-enriched 2-h phase advancing light pulse upon awakening on each of four treatment days. On the first treatment day the light pulse began 8h after the dim light melatonin onset (DLMO), on average about 2h before baseline wake time. On each subsequent day, light treatment began 1h earlier than the previous day, and the sleep schedule was also advanced. RESULTS: Phase advances of the DLMO for the blue-enriched (92+/-78 min, n=12) and white groups (76+/-45 min, n=10) were not significantly different. CONCLUSION: Bright blue-enriched polychromatic light is no more effective than standard bright light therapy for phase advancing circadian rhythms at commonly used therapeutic light levels.
Address Biological Rhythms Research Laboratory, Rush University Medical Center, Suite 425, 1645 W. Jackson Boulevard, Chicago, IL 60612, USA
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1389-9457 ISBN Medium
Area Expedition Conference
Notes PMID:18805055; PMCID:PMC2723863 Approved no
Call Number IDA @ john @ Serial 289
Permanent link to this record
 

 
Author Reiter, R.J.; Tan, D.X.; Erren, T.C.; Fuentes-Broto, L.; Paredes, S.D.
Title Light-mediated perturbations of circadian timing and cancer risk: a mechanistic analysis Type Journal Article
Year 2009 Publication Integrative Cancer Therapies Abbreviated Journal Integr Cancer Ther
Volume 8 Issue 4 Pages 354-360
Keywords *Circadian Rhythm; Humans; Light/*adverse effects; Melatonin/antagonists & inhibitors; Neoplasms/*etiology/physiopathology; Risk Factors; Sleep Deprivation/complications; oncogenesis
Abstract In industrialized countries, certain types of cancer, most notably, breast and prostate, are more frequent than in poorly developed nations. This high cancer frequency is not explained by any of the conventional causes. Within the past decade, numerous reports have appeared that link light at night with an elevated cancer risk. The three major consequences of light at night are sleep deprivation, chronodisruption, and melatonin suppression. Each of these individually or in combination may contribute to the reported rise in certain types of cancer. In this article, the potential mechanisms underlying the basis of the elevated cancer risk are briefly discussed. Finally, if cancer is a consequence of excessive nighttime light, it is likely that other diseases/conditions may also be exaggerated by the widespread use of light after darkness onset.
Address Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA. reiter@uthscsa.edu
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1534-7354 ISBN Medium
Area Expedition Conference
Notes PMID:20042411 Approved no
Call Number IDA @ john @ Serial 290
Permanent link to this record