toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Barclay, J.L.; Husse, J.; Bode, B.; Naujokat, N.; Meyer-Kovac, J.; Schmid, S.M.; Lehnert, H.; Oster, H. url  doi
openurl 
  Title Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork Type Journal Article
  Year 2012 Publication PloS one Abbreviated Journal PLoS One  
  Volume 7 Issue 5 Pages e37150  
  Keywords Animals; Biological Clocks/*physiology; Circadian Rhythm/*physiology; Disease Models, Animal; Eating/genetics; Gene Expression Regulation; Liver/metabolism; Male; Mice; Sleep Disorders, Circadian Rhythm/*metabolism/physiopathology; Suprachiasmatic Nucleus/*metabolism; Transcriptome  
  Abstract Shiftwork is associated with adverse metabolic pathophysiology, and the rising incidence of shiftwork in modern societies is thought to contribute to the worldwide increase in obesity and metabolic syndrome. The underlying mechanisms are largely unknown, but may involve direct physiological effects of nocturnal light exposure, or indirect consequences of perturbed endogenous circadian clocks. This study employs a two-week paradigm in mice to model the early molecular and physiological effects of shiftwork. Two weeks of timed sleep restriction has moderate effects on diurnal activity patterns, feeding behavior, and clock gene regulation in the circadian pacemaker of the suprachiasmatic nucleus. In contrast, microarray analyses reveal global disruption of diurnal liver transcriptome rhythms, enriched for pathways involved in glucose and lipid metabolism and correlating with first indications of altered metabolism. Although altered food timing itself is not sufficient to provoke these effects, stabilizing peripheral clocks by timed food access can restore molecular rhythms and metabolic function under sleep restriction conditions. This study suggests that peripheral circadian desynchrony marks an early event in the metabolic disruption associated with chronic shiftwork. Thus, strengthening the peripheral circadian system by minimizing food intake during night shifts may counteract the adverse physiological consequences frequently observed in human shift workers.  
  Address Max Planck Institute of Biophysical Chemistry, Gottingen, Germany  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22629359; PMCID:PMC3357388 Approved no  
  Call Number IDA @ john @ Serial 94  
Permanent link to this record
 

 
Author Fonken, L.K.; Nelson, R.J. url  doi
openurl 
  Title Dim light at night increases depressive-like responses in male C3H/HeNHsd mice Type Journal Article
  Year 2013 Publication Behavioural Brain Research Abbreviated Journal Behav Brain Res  
  Volume 243 Issue Pages 74-78  
  Keywords Affect/physiology; Anhedonia/physiology; Animals; Behavior, Animal/*physiology; Circadian Rhythm/*physiology; Depression/*etiology/physiopathology; Hippocampus/*metabolism/pathology; Light/*adverse effects; Male; Mice; Mice, Inbred C3H; Neuropsychological Tests; Photoperiod  
  Abstract Daily patterns of light exposure have become increasingly variable since the widespread adoption of electrical lighting during the 20th century. Seasonal fluctuations in light exposure, shift-work, and transmeridian travel are all associated with alterations in mood. These studies implicate fluctuations in environmental lighting in the development of depressive disorders. Here we argue that exposure to light at night (LAN) may be causally linked to depression. Male C3H/HeNHsd mice, which produce nocturnal melatonin, were housed in either a standard light/dark (LD) cycle or exposed to nightly dim (5 lux) LAN (dLAN). After four weeks in lighting conditions mice underwent behavioral testing and hippocampal tissue was collected at the termination of the study for qPCR. Here were report that mice exposed to dLAN increase depressive-like responses in both a sucrose anhedonia and forced swim test. In contrast to findings in diurnal grass rats, dLAN mice perform comparably to mice housed under dark nights in a hippocampus-dependent learning and memory task. TNFalpha and IL1beta gene expression do not differ between groups, demonstrating that changes in these pro-inflammatory cytokines do not mediate dLAN induced depressive-like responses in mice. BDNF expression is reduced in the hippocampus of mice exposed to dLAN. These results indicate that low levels of LAN can alter mood in mice. This study along with previous work implicates LAN as a potential factor contributing to depression. Further understanding of the mechanisms through which LAN contributes to changes in mood is important for characterizing and treating depressive disorders.  
  Address Department of Neuroscience, Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. fonken.1@osu.edu  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0166-4328 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23291153 Approved no  
  Call Number IDA @ john @ Serial 95  
Permanent link to this record
 

 
Author Orbach, D.N.; Fenton, B. url  doi
openurl 
  Title Vision impairs the abilities of bats to avoid colliding with stationary obstacles Type Journal Article
  Year 2010 Publication PloS one Abbreviated Journal PLoS One  
  Volume 5 Issue 11 Pages e13912  
  Keywords Analysis of Variance; Animals; Chiroptera/*physiology; Cyclonic Storms; Echolocation/*physiology; Female; Flight, Animal/*physiology; Light; Male; Space Perception/physiology/radiation effects; Vision, Ocular/*physiology/radiation effects; Vocalization, Animal/physiology  
  Abstract BACKGROUND: Free-flying insectivorous bats occasionally collide with stationary objects they should easily detect by echolocation and avoid. Collisions often occur with lighted objects, suggesting ambient light may deleteriously affect obstacle avoidance capabilities. We tested the hypothesis that free-flying bats may orient by vision when they collide with some obstacles. We additionally tested whether acoustic distractions, such as “distress calls” of other bats, contributed to probabilities of collision. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the role of visual cues in the collisions of free-flying little brown bats (Myotis lucifugus) with stationary objects, we set up obstacles in an area of high bat traffic during swarming. We used combinations of light intensities and visually dissimilar obstacles to verify that bats orient by vision. In early August, bats collided more often in the light than the dark, and probabilities of collision varied with the visibility of obstacles. However, the probabilities of collisions altered in mid to late August, coincident with the start of behavioural, hormonal, and physiological changes occurring during swarming and mating. Distress calls did not distract bats and increase the incidence of collisions. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that visual cues are more important for free-flying bats than previously recognized, suggesting integration of multi-sensory modalities during orientation. Furthermore, our study highlights differences between responses of captive and wild bats, indicating a need for more field experiments.  
  Address Department of Biology, University of Western Ontario, London, Ontario, Canada. dnorbach@gmail.com  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21085481; PMCID:PMC2976695 Approved no  
  Call Number IDA @ john @ Serial 96  
Permanent link to this record
 

 
Author Saldaña-Vázquez, R.A.; Munguía-Rosas, M.A. url  doi
openurl 
  Title Lunar phobia in bats and its ecological correlates: A meta-analysis Type Journal Article
  Year 2013 Publication Mammalian Biology – Zeitschrift für Säugetierkunde Abbreviated Journal Mammalian Biology – Zeitschrift für Säugetierkunde  
  Volume 78 Issue 3 Pages 216-219  
  Keywords Chiroptera; Foraging activity; Foraging habitat; Latitude; Moonlight; mammals; bats; animals  
  Abstract Animals show several behavioral strategies to reduce predation risks. Presumably, moonlight avoidance is a strategy used by some nocturnal species to reduce the risk of predation. In bats, some research indicates that foraging activity is negatively correlated with moonlight intensity, a phenomenon better known as lunar phobia. However, the currently available evidence is contradictory because some bat species reduce their activity during nights with more moonlight while the opposite occurs in other species. We quantitatively evaluated the strength and direction of the relationship between moonlight intensity and bat activity using a meta-analysis. We also looked at some ecological correlates of lunar phobia in bats. Specifically, we examined foraging habitat and latitude as potential moderators of the size of the lunar phobia effect. Our results show that, regardless of the method used to evaluate bat activity, the overall relationship between moonlight intensity and bat activity is significant and negative (r = −0.22). Species foraging on the surface of the water (piscivores and insectivores; r = −0.83) and forest canopy species (i.e., big frugivores; r = −0.30) are more affected by moonlight than those with different foraging habitats (understory, subcanopy, open air). Latitude was positively correlated with lunar phobia (r = 0.023). The stronger lunar phobia for bats foraging on the water surface and in the forest canopy may suggest that the risk of predation is greater where moonlight penetrates more easily. The significant effect of latitude as a moderator of lunar phobia suggests that there is a weak geographic pattern, with this phobia slightly more common in tropical bats than in temperate species.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-5047 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 97  
Permanent link to this record
 

 
Author Lewanzik, D.; Voigt, C.C.; Pocock, M. url  doi
openurl 
  Title Artificial light puts ecosystem services of frugivorous bats at risk Type Journal Article
  Year 2014 Publication Journal of Applied Ecology Abbreviated Journal J Appl Ecol  
  Volume 51 Issue 2 Pages 388-394  
  Keywords bats; mammals; animals; bat-facilitated succession; Carollia sowelli; fragmentation; frugivory; habitat connectivity; light pollution; Phyllostomidae; reforestation; seed dispersal  
  Abstract Natural succession of deforested areas and connectivity of remaining forest patches may suffer due to artificial light at night through a reduction in nocturnal seed disperser activity in lit areas. This could have negative impacts on biodiversity and consequent effects on land erosion, particularly in developing countries of the tropics where light pollution increases rapidly with growing economies and human populations. Mitigation requires that the use of artificial light should be limited in space, time and intensity to the minimum necessary. The effectiveness of ‘darkness corridors’ to enhance fragment connectivity and to reduce species loss should be evaluated. Policy-makers of tropical countries should become aware of the potential detrimental effects of artificial lighting on wildlife and ecosystem functioning.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8901 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 98  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: