|   | 
Details
   web
Records
Author Crespo Cuaresma, J.; Danylo, O.; Fritz, S.; Hofer, M.; Kharas, H.; Laso Bayas, J.C.
Title What do we know about poverty in North Korea? Type Journal Article
Year 2020 Publication Palgrave Communications Abbreviated Journal Palgrave Commun
Volume 6 Issue 1 Pages in press
Keywords Remote Sensing
Abstract Reliable quantitative information on the North Korean economy is extremely scarce. In particular, reliable income per capita and poverty figures for the country are not available. In this contribution, we provide for the first time estimates of absolute poverty rates in North Korean subnational regions based on the combination of innovative remote-sensed night-time light intensity data (monthly information for built areas) with estimated income distributions. Our results, which are robust to the use of different methods to approximate the income distribution in the country, indicate that the share of persons living in extreme poverty in North Korea may be larger than previously thought. We estimate a poverty rate for the country of around 60% in 2018 and a high volatility in the dynamics of income at the national level in North Korea for the period 2012–2018. Income per capita estimates tend to decline significantly from 2012 to 2015 and present a recovery since 2016. The subnational estimates of income and poverty reveal a change in relative dynamics since the second half of the 2012–2018 period. The first part of the period is dominated by divergent dynamics in income across regions, while the second half reveals convergence in regional income.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2055-1045 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial (down) 2866
Permanent link to this record
 

 
Author Andreatta, G.; Tessmar-Raible, K.
Title The still dark side of the moon: molecular mechanisms of lunar-controlled rhythms and clocks Type Journal Article
Year 2020 Publication Journal of Molecular Biology Abbreviated Journal J Mol Biol
Volume in press Issue Pages
Keywords Review; Animals; Hormones; Lunar rhythms; Physiology; Proteome; Transcriptome
Abstract Starting with the beginning of the last century, a multitude of scientific studies has documented that the lunar cycle times behaviors and physiology in many organisms. It is plausible that even the first life forms adapted to the different rhythms controlled by the moon. Consistently, many marine species exhibit lunar rhythms, and also the number of documented “lunar-rhythmic” terrestrial species is increasing. Organisms follow diverse lunar geophysical/astronomical rhythms, which differ significantly in terms of period length: from hours (circalunidian and circatidal rhythms) to days (circasemilunar and circalunar cycles). Evidence for internal circatital and circalunar oscillators exists for a range of species based on past behavioral studies, but those species with well-documented behaviorally free-running lunar rhythms are not typically used for molecular studies. Thus, the underlying molecular mechanisms are largely obscure: the dark side of the moon. Here we review findings which start to connect molecular pathways with moon-controlled physiology and behaviors. The present data indicate connections between metabolic/endocrine pathways and moon-controlled rhythms, as well as interactions between circadian and circatidal/circalunar rhythms. Moreover, recent high-throughput analyses provide useful leads towards pathways, as well as molecular markers. However, for each interpretation it is important to carefully consider the – partly substantially differing – conditions used in each experimental paradigm. In the future, it will be important to use lab experiments to delineate the specific mechanisms of the different solar- and lunar-controlled rhythms, but to also start integrating them together, as life has evolved equally long under rhythms of both sun and moon.
Address Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna; Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna. Electronic address: kristin.tessmar@mfpl.ac.at
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2836 ISBN Medium
Area Expedition Conference
Notes PMID:32198116 Approved no
Call Number GFZ @ kyba @ Serial (down) 2865
Permanent link to this record
 

 
Author Bumgarner, J.R.; Walker, W.H. 2nd; Liu, J.A.; Walton, J.C.; Nelson, R.J.
Title Dim light at night exposure induces cold hyperalgesia and mechanical allodynia in male mice Type Journal Article
Year 2020 Publication Neuroscience Abbreviated Journal Neuroscience
Volume in press Issue Pages
Keywords Animals; Allodynia; Hyperalgesia; Light at Night; Neuroinflammation; Opioid; Pain
Abstract The growing presence of artificial lighting across the globe presents a number of challenges to human and ecological health despite its societal benefits. Exposure to artificial light at night, a seemingly innocuous aspect of modern life, disrupts behavior and physiological functions. Specifically, light at night induces neuroinflammation, which is implicated in neuropathic and nociceptive pain states, including hyperalgesia and allodynia. Because of its influence on neuroinflammation, we investigated the effects of dim light at night exposure on pain responsiveness in male mice. In this study, mice exposed to four days of dim (5 lux) light at night exhibited cold hyperalgesia. Further, after 28 days of exposure, mice exhibited both cold hyperalgesia and mechanical allodynia. No heat/hot hyperalgesia was observed in this experiment. Altered nociception in mice exposed to dim light at night was concurrent with upregulated interleukin-6 and nerve growth factor mRNA expression in the medulla and elevated mu-opioid receptor mRNA expression in the periaqueductal gray region of the brain. The current results support the relationship between disrupted circadian rhythms and altered pain sensitivity. In summary, we observed that dim light at night induces cold hyperalgesia and mechanical allodynia, potentially through elevated central neuroinflammation and dysregulation of the endogenous opioid system.
Address Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506 United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0306-4522 ISBN Medium
Area Expedition Conference
Notes PMID:32201267 Approved no
Call Number GFZ @ kyba @ Serial (down) 2864
Permanent link to this record
 

 
Author Wang, J.; Zhou, M.; Xu, X.; Roudini, S.; Sander, S.P.; Pongetti, T.J.; Miller, S.D.; Reid, J.S.; Hyer, E.; Spurr, R.
Title Development of a nighttime shortwave radiative transfer model for remote sensing of nocturnal aerosols and fires from VIIRS Type Journal Article
Year 2020 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 241 Issue Pages 111727
Keywords Remote Sensing
Abstract The launch of the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Sumo-NPP satellite in 2011 ushered in a new era of using visible light and shortwave radiation at night to characterize aerosol and fire distributions from space. In order to exploit the full range of unprecedented observational capabilities of VIIRS, we have developed a nighttime shortwave radiative transfer model capability in the UNified and Linearized Radiative Transfer Model (UNL-VRTM). This capability is based on the use of additional source functions to treat illumination from the Moon, from fires, and from artificial lights. We have applied this model to address fundamental questions associated with the VIIRS sensing of aerosol and fire at night. Detailed description of model developments and validation (either directly with surface measurements of lunar spectra or indirectly through cross validation) are presented. Our analysis reveals that: (a) when convolution with the broad-range (500–900 nm) relative spectral response (RSR) function of the VIIRS Day-Night Band (DNB) is omitted, AOD retrieval from the DNB have uncertainties up to a factor of two in conditions with low or moderate AOD (<0.5 in mid-visible); (b) using a wavelength independent spectrum for the surface illumination source can lead to an AOD bias of −10% over surfaces illuminated by light-emitting diodes and fluorescent lamps, and −30% illuminated by high-pressure sodium lamps; and (c) a DNB-equivalent narrow band for AOD retrieval over the surfaces illuminated by the three types of bulbs studied in this paper is found to be centered at 585 nm at which the look-up table can be generated for AOD retrieval from DNB. Furthermore, while uncertainty in AOD retrievals from the DNB decreases as AOD increases, fire characterization can be affected by AOD; for a smoke-scenario AOD of 2.0, the DNB and SWIR (1.6 μm) radiances can be reduced by 50% depending on the fire area fraction and temperature within VIIRS pixel. DNB is overall more sensitive to smaller and cooler fires than SWIR and can be used to retrieve AOD over bright surfaces. Finally, three-dimensional (3D) radiative transfer effects and the non-collimated nature of most artificial light sources are neglected in this 1D radiative transfer (plane-parallel) model, resulting in possibly large uncertainties (e.g., the inability to reproduce side-illumination of clouds by city lights) that should be studied in future.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial (down) 2863
Permanent link to this record
 

 
Author Marchant, Paul
Title Bad Science: comments on the paper ‘Quantifying the impact of road lighting on road safety — a New zealand Study’ by Jackett & Frith (2013). Type Journal Article
Year 2020 Publication World Transport Policy and Practice Abbreviated Journal World Transp Policy & Practice
Volume 26 Issue 2 Pages 10-20
Keywords Safety; Security; Commentary; Statistics; Collisions
Abstract The paper of Jackett & Frith (2013), which purports to show considerable gains for road safety with increasing road luminance, is seriously flawed. It asserts that increasing the luminance on roads causes improvements in road safety. Its cross-sectional design fails to rule out major potential confounders. using a longitudinal design would be a far superior approach. The paper exhibits poor statistical practice. The selection process for the relatively small sample of urban roads is unclear and the post hoc processing of the data is questionable. The analysis is seriously deficient, as variables which indicate detrimental effects of increased road lighting are removed from the modelling without proper justification and other variables are not included in the first analysis yet appear in the subsequent cosmetic analyses. The latter give an illusion of false certainty. The data collected, which would allow checking, is not published. The practice of the journal in which the paper appeared is seriously deficient in not allowing the publication of critical responses. although being used to promote increased road lighting, the paper’s claim disagrees with results from better quality research
Address 221 Leighton Hall, Leeds Beckett University, Leeds, United Kingdom LS1 3HE; p.marchant(at)leedsbeckett.ac.uk
Corporate Author Thesis
Publisher World Transport Policy and Practice Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1352-7614 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial (down) 2862
Permanent link to this record