|   | 
Details
   web
Records
Author Larsen, D.A.; Martin, A.; Pollard, D.; Nielsen, C.F.; Hamainza, B.; Burns, M.; Stevenson, J.; Winters, A.
Title Leveraging risk maps of malaria vector abundance to guide control efforts reduces malaria incidence in Eastern Province, Zambia Type Journal Article
Year 2020 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 10 Issue 1 Pages 10307
Keywords Remote sensing
Abstract Although transmission of malaria and other mosquito-borne diseases is geographically heterogeneous, in sub-Saharan Africa risk maps are rarely used to determine which communities receive vector control interventions. We compared outcomes in areas receiving different indoor residual spray (IRS) strategies in Eastern Province, Zambia: (1) concentrating IRS interventions within a geographical area, (2) prioritizing communities to receive IRS based on predicted probabilities of Anopheles funestus, and (3) prioritizing communities to receive IRS based on observed malaria incidence at nearby health centers. Here we show that the use of predicted probabilities of An. funestus to guide IRS implementation saw the largest decrease in malaria incidence at health centers, a 13% reduction (95% confidence interval = 5-21%) compared to concentrating IRS geographically and a 37% reduction (95% confidence interval = 30-44%) compared to targeting IRS based on health facility incidence. These results suggest that vector control programs could produce better outcomes by prioritizing IRS according to malaria-vector risk maps.
Address University of Montana, Missoula, MT, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:32587283; PMCID:PMC7316765 Approved no
Call Number GFZ @ kyba @ Serial (down) 3025
Permanent link to this record
 

 
Author Hanifin, J.P.; Dauchy, R.T.; Blask, D.E.; Hill, S.M.; Brainard, G.C.
Title Relevance of Electrical Light on Circadian, Neuroendocrine, and Neurobehavioral Regulation in Laboratory Animal Facilities Type Journal Article
Year 2020 Publication ILAR Journal Abbreviated Journal
Volume in press Issue Pages
Keywords Review; Animals
Abstract Light is a key extrinsic factor to be considered in operations and design of animal room facilities. Over the past four decades, many studies on typical laboratory animal populations have demonstrated impacts on neuroendocrine, neurobehavioral, and circadian physiology. These effects are regulated independently from the defined physiology for the visual system. The range of physiological responses that oscillate with the 24 hour rhythm of the day include sleep and wakefulness, body temperature, hormonal secretion, and a wide range of other physiological parameters. Melatonin has been the chief neuroendocrine hormone studied, but acute light-induced effects on corticosterone as well as other hormones have also been observed. Within the last two decades, a new photosensory system in the mammalian eye has been discovered. A small set of retinal ganglion cells, previously thought to function as a visual output neuron, have been shown to be directly photosensitive and act differently from the classic photoreceptors of the visual system. Understanding the effects of light on mammalian physiology and behavior must take into account how the classical visual photoreceptors and the newly discovered ipRGC photoreceptor systems interact. Scientists and facility managers need to appreciate lighting impacts on circadian, neuroendocrine, and neurobehavioral regulation in order to improve lighting of laboratory facilities to foster optimum health and well-being of animals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1084-2020 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial (down) 3024
Permanent link to this record
 

 
Author Rydell, J.; Elfstrom, M.; Eklof, J.; Sanchez-Navarro, S.
Title Dramatic decline of northern bat Eptesicus nilssonii in Sweden over 30 years Type Journal Article
Year 2020 Publication Royal Society Open Science Abbreviated Journal R Soc Open Sci
Volume 7 Issue 2 Pages 191754
Keywords Animals; Lepidoptera; climate change; light pollution; line transects; long-term monitoring; population decline
Abstract We monitored northern bat Eptesicus nilssonii (Keyserling & Blasius, 1839) acoustically along a 27 km road transect at weekly intervals in 1988, 1989 and 1990, and again in 2016 and 2017. The methodology of data collection and the transect were the same throughout, except that the insect-attracting mercury-vapour street-lights along parts of the road were replaced by sodium lights between the two survey periods. Counts along sections of the transect with and without street-lights were analysed separately. The frequency of bat encounters in unlit sections showed an average decline of 3.0% per year, corresponding to a reduction of 59% between 1988 and 2017. Sections with street-lights showed an 85% decline over the same period (6.3% per year). The decline represents a real reduction in the abundance of bats rather than an artefact of changed distribution of bats away from roads. Our study conforms with another long-term survey of the same species on the Baltic island of Gotland. Our results agree with predictions based on climate change models. They also indicate that the decline was caused directly by the disuse of the insect-attracting mercury-vapour street-lights, which may have resulted in lower availability of preferred prey (moths). In the 1980s, E. nilssonii was considered the most common bat in Sweden, but the subsequent decline would rather qualify it for vulnerable or endangered status in the national Red List of Threatened Species.
Address Biology Department, Lund University, 223 62 Lund, Sweden
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2054-5703 ISBN Medium
Area Expedition Conference
Notes PMID:32257332; PMCID:PMC7062070 Approved no
Call Number GFZ @ kyba @ Serial (down) 3023
Permanent link to this record
 

 
Author Mattsson, P.; Johansson, M.; Almén, M.; Laike, T.; Marcheschi, E.; Ståhl, A.
Title Improved Usability of Pedestrian Environments After Dark for People with Vision Impairment: an Intervention Study Type Journal Article
Year 2020 Publication Sustainability Abbreviated Journal Sustainability
Volume 12 Issue 3 Pages 1096
Keywords Vision
Abstract Walking is an important transport mode for sustainable cities, but the usability of pedestrian environments for people with impaired vision is very limited after dark. This study compares the usability of a walkway, operationalized in terms of (i) the pedestrian’s ability to orient themselves and detect infrastructure elements, and (ii) the perceived quality of lighting in the environment (evaluated in terms of the perceived strength quality and perceived comfort quality). The study was performed in a city in southern Sweden, along a pedestrian route where observations and structured interviews had previously been conducted and after an intervention involving installing new lighting systems with LED lights. A mixed method analysis involving participants with impaired vision (N=14) showed that the intervention generally improved the walkway’s usability: observations indicated that the participants’ ability to orientate themselves and detect infrastructure elements increased, and the interviews showed that the intervention increased the perceived strength quality of the lighting along the walkway. However, the effects on the perceived comfort quality were unclear. It is therefore important to carefully evaluate new lighting systems to reduce the risk of creating an inappropriate lighting design that will limit walking after dark by people with impaired vision.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial (down) 3022
Permanent link to this record
 

 
Author Brauckhoff, M.; Wahlberg, M.; Haga, J.Å.R.; Karlsen, H.E.; Wilson, M.
Title Embracing Their Prey at That Dark Hour: Common Cuttlefish (Sepia officinalis) Can Hunt in Nighttime Light Conditions Type Journal Article
Year 2020 Publication Frontiers in Physiology Abbreviated Journal Front. Physiol.
Volume 11 Issue Pages in press
Keywords Animals
Abstract Cuttlefish are highly efficient predators, which strongly rely on their anterior binocular visual field for hunting and prey capture. Their complex eyes possess adaptations for low light conditions. Recently, it was discovered that they display camouflaging behavior at night, perhaps to avoid detection by predators, or to increase their nighttime hunting success. This raises the question whether cuttlefish are capable of foraging during nighttime. In the present study, prey capture of the common cuttlefish (Sepiaofficinalis) was filmed with a high-speed video camera in different light conditions.Experiments were performed in daylight and with near-infrared light sources in two simulated nightlight conditions, as well as in darkness. The body of the common cuttlefish maintained a velocity of less than 0.1 m/s during prey capture, while the tentacles during the seizing phase reached velocities of up to 2.5 m/s and accelerations reached more than 450 m/s2 for single individuals. There was no significant difference between the day and nighttime trials, respectively. In complete darkness, the common cuttlefish was unable to catch any prey. Our results show that the common cuttlefish are capable of catching prey during day- and nighttime light conditions. The common cuttlefish employ similar sensory motor systems and prey capturing techniques during both day- and nighttime conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-042X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial (down) 3021
Permanent link to this record