toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Peregrym, M.; Kabaš, E.; Tashev, A.; Dragićević, S.; Pénzesné Kónya, E.; Savchenko, M. url  doi
openurl 
  Title Is Artificial Light at Night Dangerous for the Balkan Strict Protected Areas at Present? Type Journal Article
  Year 2020 Publication Water, Air, & Soil Pollution Abbreviated Journal Water Air Soil Pollut  
  Volume 231 Issue 2 Pages in press  
  Keywords Conservation; Ecology  
  Abstract The Balkan Peninsula has rich biodiversity with a large number of endemic species; therefore, a part of its territory has been recognized as a World Biodiversity Hotspot. Despite nature conservation efforts and development of nature conservation networks in countries of the region, anthropogenic influence on natural and semi natural ecosystems is increasing. Moreover,new types of disturbance and pollution arise, and one of the more recent being artificial light at night (ALAN)which has serious consequences on reproduction, navigation, foraging, habitat selection, communication, trophic and social interactions of the biota. We have estimated the level of ecological light pollution in the strictprotected areas of the Republic of Serbia, the Republic of Bulgaria, and Montenegro using available GoogleEarth Pro tools, and the New World Atlas of Artificial Sky Brightness (2016) in the form of a kmz layer. The research has covered 13 National Parks, 11 Nature Parks and 55 Reserves. Our results showed widespread incursion of ALAN within strict protected areas in the studied region that has also been noted for some other countries and regions too. However, the level of light pollution is lower here, than in the most part of Continental Europe, and there are a few areas in each country where the night sky above National and Natural Parks is almost dark. These territories have a special value for nature conservation;therefore, it is important to save the dark night sky there.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-6979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2853  
Permanent link to this record
 

 
Author Yang, Y.; Liu, Q.; Wang, T.; Pan, J. url  doi
openurl 
  Title Light pollution disrupts molecular clock in avian species: A power-calibrated meta-analysis Type Journal Article
  Year 2020 Publication Environmental Pollution Abbreviated Journal Environmental Pollution  
  Volume in press Issue Pages 114206  
  Keywords Animals  
  Abstract Nighttime lighting is an increasingly important anthropogenic environmental stress on plants and animals. Exposure to unnatural lighting environments may disrupt circadian rhythm. However, studies involved in molecular biology, e.g. disruption of molecular circadian clock by light pollution, always have a small sample sizes. The small sample sizes result in a low statistical power and difficulties in replicating prior results. Here, a power-calibrated meta-analysis was developed to overcome these weakness. The results demonstrated that effect size of 2.48 in clock genes induced by artificial light would promised the reproducibility of the results as high as 80%. Long wavelength light entrained the positive core clock genes and negative core clock genes with robust circadian rhythmic expression, whereas some of those genes, e.g. cClock, cCry1, cCry2, cPer2, and cPer3, were arrhythmic in short wavelength light. Artificial light entrained the transcriptional-translational feedback loop of molecular clock in a wavelength-dependent manner. The expression positive core clock genes (cBmal1, cBmal2 and cClock), cAanat gene and melatonin were the greatest in short wavelength light and the lowest in long wavelength light. However, for negative regulators of molecular clock (cCry1, cCry2, cPer2 and cPer3), the greatest were in long wavelength light and the lowest were in short wavelength light. Our study opens up new opportunities to understand and strengthen conclusions based on the studies with small sample sizes and provides further insight about the disrupting in circadian rhythm by short wavelength light. Especially, the global lighting is shifting from “yellow” sodium lamps toward blue-enriched “white” light-emitting diodes (LEDs).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-7491 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2852  
Permanent link to this record
 

 
Author Nanjo, S.; Hozumi, Y.; Hosokawa, K.; Kataoka, R.; Miyoshi, Y.; Oyama, S.‐ichiro; Ozaki, M.; Shiokawa, K.; Kurita, S. url  doi
openurl 
  Title Fine‐Scale Visualization of Aurora in a Wide Area Using Color Digital Camera Images From the International Space Station Type Journal Article
  Year 2020 Publication Journal of Geophysical Research: Space Physics Abbreviated Journal J. Geophys. Res. Space Physics  
  Volume 125 Issue 3 Pages  
  Keywords natural light; aurora  
  Abstract The full‐color photographs of aurora have been taken with digital single‐lens reflex cameras mounted on the International Space Station (ISS). Since these photographs do not have accurate time and geographical information, in order to use them as scientific data, it is necessary to calibrate the imaging parameters (such as looking direction and angle of view of the camera) of the photographs. For this purpose, we calibrated the imaging parameters using a city light image taken from the Defense Meteorological Satellite Program satellite following the method of Hozumi et al. (2016, https://doi.org/10.1186/s40623-016-0532-z). We mapped the photographs onto the geographic coordinate system using the calibrated imaging parameters. To evaluate the accuracy of the mapping, we compared the aurora taken simultaneously from ISS and ground. Comparing the spatial structure of discrete aurora and the temporal variation of pulsating aurora, the accuracy of the data set is less than 0.3 s in time and less than 5 km in space in the direction perpendicular to the looking direction of the camera. The generated data set has a wide field of view ( urn:x-wiley:jgra:media:jgra55570:jgra55570-math-00011,100  urn:x-wiley:jgra:media:jgra55570:jgra55570-math-0002 900 km), and their temporal resolution is less than 1 s. Not only that, the field of view can sweep a wide area ( urn:x-wiley:jgra:media:jgra55570:jgra55570-math-00033,000 km in longitude) in a short time ( urn:x-wiley:jgra:media:jgra55570:jgra55570-math-000410 min). Thus, this new imaging capability will enable us to capture the evolution of fine‐scale spatial structure of aurora in a wide area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9380 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2851  
Permanent link to this record
 

 
Author Min, M.; Zheng, J.; Zhang, P.; Hu, X.; Chen, L.; Li, X.; Huang, Y.; Zhu, L. url  doi
openurl 
  Title A low-light radiative transfer model for satellite observations of moonlight and earth surface light at night Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume in press Issue Pages 106954  
  Keywords Remote Sensing; Instrumentation  
  Abstract Lunar sun-reflected light can be effectively measured through a low-light band or a day/night band (DNB) implemented on space-based optical sensors. Based on moonlight, nocturnal observations for artificial light sources at night can be achieved. However, to date, an open-sourced and mature Low-Light Radiative Transfer Model (LLRTM) for the further understanding of the radiative transfer problem at night is still unavailable. Therefore, this study develops a new LLRTM at night with the correction of the lunar and active surface light sources. First, the radiative transfer equations with an active surface light source are derived for the calculation based on the lunar spectral irradiance (LSI) model. The simulation from this new LLRTM shows a minimal bias when compared with the discrete ordinates radiative transfer (DISORT) model. The simulated results of radiance and reflectance at the top of the atmosphere (TOA) also show that the surface light source has a remarkable impact on the radiative transfer process. In contrast, the change in the lunar phase angle has minimal influence. Also, comparing with space-based DNB radiance observations, LLRTM shows the potential to simulate space-based low-light imager observations under an effective surface light source condition during the night.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2850  
Permanent link to this record
 

 
Author Sun, Y.; Wang, S.; Wang, Y. url  doi
openurl 
  Title Estimating local-scale urban heat island intensity using nighttime light satellite imageries Type Journal Article
  Year 2020 Publication Sustainable Cities and Society Abbreviated Journal Sustainable Cities and Society  
  Volume 57 Issue Pages in press  
  Keywords Remote Sensing  
  Abstract Urban heat island (UHI) effect tends to harm health, increase anthropogenic energy consumption, and water consumption. Some policies targeting UHI mitigation have been implemented for a few years and thus needs to be evaluated for changes or modifications in the future. A low-cost approach to rapidly monitoring UHI intensity variations can assist in evaluating policy implementations. In this study, we proposed a new approach to local-scale UHI intensity estimates by using nighttime light satellite imageries. We explored to what extent UHI intensity could be estimated according to nighttime light intensity at two local scales. We attempted to estimate district-level and neighbourhood-level UHI intensity across London and Paris. As the geography level rises from district to neighbourhood, the capacity of the models explaining the variations of the UHI intensity decreases. Although the possible presence of residual spatial autocorrelation in the conventional regression models applied to geospatial data, most of the studies are likely to neglect this issue when fitting data to models. To remove negative effects of the residual spatial autocorrelation, this study used spatial regression models instead of non-spatial regression models (e.g., OLS models) to estimate UHI intensity. As a result, district-level UHI intensity was successfully estimated according to nighttime light intensity (approximately R2 = 0.7, MAE =1.16 °C, and RMSE =1.74 °C).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2210-6707 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2849  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: