toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Owens, A. C. S., Cochard, P., Durrant, J., Farnworth, B., Perkin, E. K., &Seymoure, B. url  openurl
  Title Light Pollution Is a Driver of Insect Declines Type Journal Article
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Ecology; Animals  
  Abstract Insects around the world are rapidly declining. Concerns over what this loss means for food security and ecological communities have compelled a growing number of researchers to search for the key drivers behind the decline. Habitat loss, pesticide use, invasive species, and climate change all have likely played a role, but we posit here that artificial light at night (ALAN) is another important — but often overlooked — bringer of the insect apocalypse. We first discuss the history and extent of ALAN, and then present evidence that ALAN has led to insect declines through its interference with the development, movement, foraging, and reproductive success of diverse insect species, as well as its positive effect on insectivore predation. We conclude with a discussion of how artificial lights can be tuned to reduce their impacts on vulnerable populations. ALAN is unique among anthropogenic habitat disturbances in that it is fairly easy to ameliorate, and leaves behind no residual effects. Greater recognition of the ways in which ALAN impacts insects can help conservationists reduce or eliminate one of the major drivers of insect declines.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial (down) 2649  
Permanent link to this record
 

 
Author PENG, Y., ZHANG, H., GUO, K., DING, Y., WANG, X. url  doi
openurl 
  Title The Safe Distance Between Road Lighting Fixtures and Street Trees. Type Journal Article
  Year 2019 Publication Journal of Landscape Research Abbreviated Journal  
  Volume 11 Issue 2 Pages 41-43  
  Keywords Plants; Planning  
  Abstract The road lighting system and the road greening system, which are mutually interrelated and independent, are two important parts in the urban road environment Unreasonable road lighting is easy to induce light pollution and has a great negative impact on the physiology and growth of garden plants in the urban green space. In this paper; 21 kinds of common tree species in the urban green space of Zhengzhou were selected as the research object, and the photosynthetic physiological parameters of landscape trees under the TKD light source were observed using LI-6400 Photosynthesis System. This paper attempted to find the critical point for initiating photosynthesis of different types of tree species under a certain light source and then calculated the safe distance between lighting fixtures and landscape trees. The results showed that road lighting interfered with the photosynthetic physiological activities of the surveyed trees, affecting the normal dormancy of the plants at night; the sensitivity of different tree species to night lighting was different, and there were some differences in the light compensation points, so the corresponding safe distance was also different It is hoped that this study can provide a valuable reference and scientific basis for urban toad greening and lighting design.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial (down) 2648  
Permanent link to this record
 

 
Author Birriel, J. J.; Adkins, J. K. url  openurl
  Title Sky Brightness at Zenith During the January 2019 Total Lunar Eclipse Type Journal Article
  Year 2019 Publication The Journal of the American Association of Variable Star Observers Abbreviated Journal  
  Volume 47 Issue 1 Pages 94  
  Keywords Skyglow  
  Abstract Lunar eclipses occur during the full moon phase when the moon is obscured by Earth's shadow. During these events, the night sky brightness changes as the full moon rises and then passes first into the penumbral and then the umbral shadow. We acquired sky brightness data at zenith using a Unihedron Sky Quality Meter during the 20-21 January 2019 total lunar eclipse as seen from Morehead, Kentucky. The resulting sky brightness curve shows an obvious signature when the moon enters the umbral (partial) eclipse phases and the total eclipse phase. During the total eclipse phase, the brightness curve is flat and measures 19.1 ± 0.1 mag / arcsec2. The observed brightness at totality is close to typical new moon in January night at our location, which measures 19.3 ± 0.1 mag / arcsec2. The partial eclipse phase is symmetric on either side of totality. The penumbral phase is more difficult to identify in the plot, without comparison to a typical full moon night. There is a clear asymmetry in the curve just before and just after the umbral phase. This asymmetry is probably due to changes in terrestrial atmospheric conditions, such as high altitude clouds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial (down) 2647  
Permanent link to this record
 

 
Author Witkowski, P., & Korzeniewska, E. url  doi
openurl 
  Title Comparative analysis of HPS and LED luminaries in terms of effectiveness of greenhouse plant lighting and light emission Type Journal Article
  Year 2019 Publication IEEE Xplore Abbreviated Journal  
  Volume Issue Pages  
  Keywords Lighting  
  Abstract The article focuses on the analysis of the parameters of light sources, spectrum characteristics of HPS and LED lighting to achieve the best results in greenhouse cultivation with the least energy consumption, and the escape of light into space. The authors have compared both sodium HPS and LED luminaries in the aspect of colour light efficiency and their influence on the plant vegetation process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial (down) 2646  
Permanent link to this record
 

 
Author Cho, M., Park, R., Yoon, J., Choi, Y., Jeong, J. I., Labzovskii, L., Fu, J. S., Huang, K., Jeong, S., & Kim, B. url  openurl
  Title A missing component of Arctic warming: Black carbon from gas flaring Type Journal Article
  Year 2019 Publication Environmental Research Letters Abbreviated Journal  
  Volume Issue Pages  
  Keywords Remote Sensing  
  Abstract Gas flaring during oil extraction over the Arctic region is the primary source of warming-inducing aerosols (e.g., black carbon (BC)) with a strong potential to affect regional climate change. Despite continual BC emissions near the Arctic Ocean via gas flaring, the climatic impacts of BC related to gas flaring remain uncertain. Here, we present simulations of potential gas flaring using an earth system model with comprehensive aerosol physics that to show that increases in BC from gas flaring can potentially explain a significant fraction of Arctic warming. BC emissions from gas flaring over high latitudes contribute to locally confined warming over the source region, especially during the Arctic spring through BC-induced local albedo reduction. This local warming invokes remote and temporally lagging sea-ice melting feedback processes over the Arctic Ocean during winter. Our findings imply that a regional change in anthropogenic aerosol forcing is capable of changing Arctic temperatures in regions far from the aerosol source via time-lagged, sea-ice-related Arctic physical processes. We suggest that both energy consumption and production processes can increase Arctic warming.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial (down) 2645  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: