|   | 
Details
   web
Records
Author Kunz, T.H.; Gauthreaux, S.A.J.; Hristov, N.I.; Horn, J.W.; Jones, G.; Kalko, E.K.V.; Larkin, R.P.; McCracken, G.F.; Swartz, S.M.; Srygley, R.B.; Dudley, R.; Westbrook, J.K.; Wikelski, M.
Title Aeroecology: probing and modeling the aerosphere Type Journal Article
Year 2008 Publication Integrative and Comparative Biology Abbreviated Journal Integr Comp Biol
Volume 48 Issue 1 Pages 1-11
Keywords aeroecology; light; biology
Abstract Aeroecology is a discipline that embraces and integrates the domains of atmospheric science, ecology, earth science, geography, computer science, computational biology, and engineering. The unifying concept that underlies this emerging discipline is its focus on the planetary boundary layer, or aerosphere, and the myriad of organisms that, in large part, depend upon this environment for their existence. The aerosphere influences both daily and seasonal movements of organisms, and its effects have both short- and long-term consequences for species that use this environment. The biotic interactions and physical conditions in the aerosphere represent important selection pressures that influence traits such as size and shape of organisms, which in turn facilitate both passive and active displacements. The aerosphere also influences the evolution of behavioral, sensory, metabolic, and respiratory functions of organisms in a myriad of ways. In contrast to organisms that depend strictly on terrestrial or aquatic existence, those that routinely use the aerosphere are almost immediately influenced by changing atmospheric conditions (e.g., winds, air density, precipitation, air temperature), sunlight, polarized light, moon light, and geomagnetic and gravitational forces. The aerosphere has direct and indirect effects on organisms, which often are more strongly influenced than those that spend significant amounts of time on land or in water. Future advances in aeroecology will be made when research conducted by biologists is more fully integrated across temporal and spatial scales in concert with advances made by atmospheric scientists and mathematical modelers. Ultimately, understanding how organisms such as arthropods, birds, and bats aloft are influenced by a dynamic aerosphere will be of importance for assessing, and maintaining ecosystem health, human health, and biodiversity.
Address *Center for Ecology and Conservation Biology, Department of Biology, Boston University, Boston, MA 02215, USA; Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK; Department of Experimental Ecology, University of Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany; Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820, USA; Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-1610, USA; Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA; **USDA-ARS, 1500 N. Central Avenue, Sidney, MT 59270, USA; Department of Integrative Biology, University of California, Berkeley, CA 94720, USA; USDA-ARS, 2771 F&B Road, College Station, TX 77845, USA and Department of Ecology and Evolutionary Biology, Princeton University, Princeton NJ 08544, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1540-7063 ISBN Medium
Area Expedition Conference
Notes PMID:21669768 Approved no
Call Number IDA @ john @ Serial (up) 19
Permanent link to this record
 

 
Author Kyba, C.C.M.; Ruhtz, T.; Fischer, J.; Hölker, F.
Title Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems Type Journal Article
Year 2011 Publication PloS one Abbreviated Journal PLoS One
Volume 6 Issue 3 Pages e17307
Keywords Berlin; *Cities; *Ecosystem; Environmental Pollution/*adverse effects/analysis; *Light; Seasons; *Weather
Abstract The diurnal cycle of light and dark is one of the strongest environmental factors for life on Earth. Many species in both terrestrial and aquatic ecosystems use the level of ambient light to regulate their metabolism, growth, and behavior. The sky glow caused by artificial lighting from urban areas disrupts this natural cycle, and has been shown to impact the behavior of organisms, even many kilometers away from the light sources. It could be hypothesized that factors that increase the luminance of the sky amplify the degree of this “ecological light pollution”. We show that cloud coverage dramatically amplifies the sky luminance, by a factor of 10.1 for one location inside of Berlin and by a factor of 2.8 at 32 km from the city center. We also show that inside of the city overcast nights are brighter than clear rural moonlit nights, by a factor of 4.1. These results have important implications for choronobiological and chronoecological studies in urban areas, where this amplification effect has previously not been considered.
Address Institute for Space Sciences, Freie Universitat Berlin, Berlin, Germany. christopher.kyba@wew.fu-berlin.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:21399694; PMCID:PMC3047560 Approved no
Call Number IDA @ john @ Serial (up) 20
Permanent link to this record
 

 
Author Kyba, C.C.M.; Ruhtz, T.; Fischer, J.; Hölker, F.
Title Lunar skylight polarization signal polluted by urban lighting Type Journal Article
Year 2011 Publication Journal of Geophysical Research: Atmospheres Abbreviated Journal J. Geophys. Res.
Volume 116 Issue D24 Pages
Keywords aeroecology; ecological light pollution; light pollution; moonlight; nocturnal navigation; polarized light
Abstract On clear moonlit nights, a band of highly polarized light stretches across the sky at a 90 degree angle from the moon, and it was recently demonstrated that nocturnal organisms are able to navigate based on it. Urban skyglow is believed to be almost unpolarized, and is therefore expected to dilute this unique partially linearly polarized signal. We found that urban skyglow has a greater than expected degree of linear polarization (p = 8.6 ± 0.3%), and confirmed that its presence diminishes the natural lunar polarization signal. We also observed that the degree of linear polarization can be reduced as the moon rises, due to the misalignment between the polarization angles of the skyglow and scattered moonlight. Under near ideal observing conditions, we found that the lunar polarization signal was clearly visible (p = 29.2 ± 0.8%) at a site with minimal light pollution 28 km from Berlin's center, but was reduced (p = 11.3 ± 0.3%) within the city itself. Daytime measurements indicate that without skyglow pwould likely be in excess of 50%. These results indicate that nocturnal animal navigation systems based on perceiving polarized scattered moonlight likely fail to operate properly in highly light-polluted areas, and that future light pollution models must take polarization into account.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0148-0227 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial (up) 21
Permanent link to this record
 

 
Author Horváth, G.; Kriska, G.; Malik, P.; Robertson, B.
Title Polarized light pollution: a new kind of ecological photopollution Type Journal Article
Year 2009 Publication Frontiers in Ecology and the Environment Abbreviated Journal Frontiers in Ecology and the Environment
Volume 7 Issue 6 Pages 317-325
Keywords light pollution; polarization; polarized light pollution
Abstract The alteration of natural cycles of light and dark by artificial light sources has deleterious impacts on animals and ecosystems. Many animals can also exploit a unique characteristic of light – its direction of polarization –as a source of information. We introduce the term “polarized light pollution” (PLP) to focus attention on the ecological consequences of light that has been polarized through interaction with human-made objects. Unnatural polarized light sources can trigger maladaptive behaviors in polarization-sensitive taxa and alter ecological interactions. PLP is an increasingly common byproduct of human technology, and mitigating its effects through selective use of building materials is a realistic solution. Our understanding of how most species use polarization vision is limited, but the capacity of PLP to drastically increase mortality and reproductive failure in animal populations suggests that PLP should become a focus for conservation biologists and resource managers alike.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1540-9295 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial (up) 22
Permanent link to this record
 

 
Author Lyytimäki, J.; Tapio, P.; Assmuth, T.
Title Unawareness in environmental protection: The case of light pollution from traffic Type Journal Article
Year 2012 Publication Land Use Policy Abbreviated Journal Land Use Policy
Volume 29 Issue 3 Pages 598-604
Keywords Public Safety; public policy; traffic safety
Abstract New information is often emphasized as a basis of effective and scientifically sound environmental policy and management. However, outdated or incorrect information is not automatically nor instantly replaced by new insights. This article focuses on the various ways environmental information can be unintentionally left with insufficient attention or purposefully neglected. Energy-related emissions caused by road traffic in Finland are used as an illustrative example and light pollution caused by artificial lighting is identified as an emerging issue that has gained especially low recognition in the environmental agenda. Four different reasons for this lack of recognition are discussed: recognized unawareness, false awareness, deliberate unawareness and concealed awareness. Paying attention to light pollution is important because of various ecological, socio-cultural and economic effects but also because implementing measures aimed for reducing light pollution create possibilities for alleviating other social and environmental problems in transport and land use policies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-8377 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial (up) 23
Permanent link to this record