|   | 
Details
   web
Records
Author Aubé, M.; Roby, J.
Title Sky brightness levels before and after the creation of the first International Dark Sky Reserve, Mont-Mégantic Observatory, Québec, Canada Type Journal Article
Year 2014 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT
Volume 139 Issue Pages 52-63
Keywords Skyglow; measurements; metrology; Mont-Mégantic; Quebec; Canada; modelling; radiative transfer; sky quality; sky brightness
Abstract In 2007, the area around the Mont-Mégantic Observatory (MMO) was officially certified by the International Dark-Sky Association and the Royal Astronomy Association of Canada as the first International Dark Sky Reserve (IDSR). In order to be able to investigate the impact of Artificial Light at Night on night sky brightness before and after the establishment of the IDSR, we used a heterogeneous artificial sky brightness model including an implicit calculation of 2nd order scattering (ILLUMINA) developed by Martin Aubé's group. This model generates three kinds of outputs: the sky radiance at the given site, observing angle and wavelength and the corresponding contribution and sensitivity maps. The maps allow for the identification of the origin of the sky radiance according to each part of the surrounding territory. For summer clear sky conditions, the results show that replacing light fixtures within a 25 km radius around the MMO with cut-off High Pressure Sodium devices and reducing the total installed radiant power to ~40% of its initial level are very efficient ways of reducing artificial sky brightness. The artificial sky brightness reduction at zenith observed after the establishment of the IDSR was ~50% in the 546 nm mercury spectral line, while the reduction obtained in the 569 nm sodium line was ~30%. A large part of that reduction can be associated to the reduction in radiant power. The contribution and sensitivity maps highlight critical zones where any changes in the lighting infrastructure have the most important impact on sky brightness at the MMO. Contribution and sensitivity maps have been used to analyze the detailed origin of sky brightness reduction. The results of this study are intended to support authorities in the management of their lighting infrastructure with the goal of reducing sky brightness. The results have been shared with MMO officials and are being used as a tool to improve sky quality at the observatory.
Address Tel.: +1 819 564 6350x4146.
Corporate Author Thesis
Publisher ScienceDirect Place of Publication Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1099
Permanent link to this record
 

 
Author Benn, C.R.; Ellison, S.L.
Title La Palma night-sky brightness Type Report
Year 1998 Publication La Palma Technical Reports Abbreviated Journal
Volume Issue 115 Pages
Keywords Skyglow; solar cycle; airglow; zodiacal light; light pollution; observatories; *Light
Abstract The brightness of the moonless night sky above La Palma was measured on 427 CCD images taken with the Isaac Newton and Jacobus Kapteyn Telescopes on 63 nights during 1987 – 1996. The median sky brightness at high elevation, high galactic latitude and high ecliptic latitude, at sunspot minimum, is B = 22.7, V = 21.9, R = 21.0, similar to that at other dark sites. The main contributions to sky brightness are airglow and zodiacal light. The sky is brighter at low ecliptic latitude (by 0.4 mag); at solar maximum (by 0.4 mag); and at high airmass (0.25 mag brighter at airmass 1.5). Light pollution (line + continuum) contributes < 0.03 mag in U, approximately 0.02 mag in B, approximately 0.10 mag in V, approximately and 0.10 mag in R at the zenith.
Address Isaac Newton Group, Apartado 321, 38780 Santa Cruz de La Palma, Spain
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Lots of useful theory on the various contributions to natural sky background level and expected surface brightnesses Approved no
Call Number IDA @ john @ Serial 1101
Permanent link to this record
 

 
Author Kamrowski, R.L.; Limpus, C.; Pendoley, K.; Hamann, M.
Title Influence of industrial light pollution on the sea-finding behaviour of flatback turtle hatchlings Type Journal Article
Year 2014 Publication Wildlife Research Abbreviated Journal Wildl. Res.
Volume 41 Issue 5 Pages 421
Keywords Animals; industrial development; marine turtle; Natator depressus; orientation; Port Curtis; Australia
Abstract Context. Numerous studies show that artificial light disrupts the sea-finding ability of marine turtle hatchlings. Yet very little has been published regarding sea-finding for flatback turtles. Given the current industrialisation of Australia’s coastline, and the large potential for disruption posed by industrial light, this study is a timely investigation into sea- finding behaviour of flatback turtle hatchlings.

Aims. We investigate sea-finding by flatback turtle hatchlings in relation to ambient light present in areas of planned or ongoing industrial development, and evaluate the fan and arena-based methods that are frequently used for quantifying hatchling dispersion.

Methods. Using a combination of methods, we assessed the angular range and directional preference of sea-finding hatchlings at two key flatback turtle rookeries, Peak and Curtis Islands, during January–February 2012 and 2013, and at Curtis Island in January 2014. Relative light levels at each site were measured using an Optec SSP-3 stellar photometer, and moon phase, moon stage and cloud cover were also recorded.

Key results. We found no evidence of impaired hatchling orientation, and observed very low levels of light at Peak Island. However, at Curtis Island, hatchlings displayed reduced sea-finding ability, with light horizons from the direction of nearby industry significantly brighter than from other directions. The sea-finding disruption observed at Curtis Island was less pronounced in the presence of moonlight.

Conclusions. The reduced sea-finding ability of Curtis Island hatchlings was likely due to both altered light horizons from nearby industry, as well as beach topography. Both methods of assessing hatchling orientation have benefits and limitations. We suggest that fan-based methods, combined with strategically placed arenas, would provide the best data for accurately assessing hatchling sea-finding.

Implications. Sky glow produced by large-scale industrial development appears detrimental to sea-finding by flatback turtle hatchlings. As development continues around Australia’s coastline, we strongly recommend continued monitoring of lighting impacts at adjacent turtle nesting beaches. We also advise rigorous management of industrial lighting, which considers cumulative light levels in regions of multiple light producers, as well as moon phase, moon-stage, cloud cover and time of hatchling emergence. All these factors affect the likelihood of disrupted hatchling sea-finding behaviour at nesting beaches exposed to artificial light-glow, industrial or otherwise.
Address School of Earth and Environmental Sciences, James Cook University, Townsville, Qld 4811, Australia; ruth.kamrowski@my.jcu.edu.au
Corporate Author Thesis
Publisher CSIRO Place of Publication Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1035-3712 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 1109
Permanent link to this record
 

 
Author Aubé, M.
Title Physical behaviour of anthropogenic light propagation into the nocturnal environment Type Journal Article
Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci
Volume 370 Issue Pages 20140117
Keywords Skyglow; artificial light at night; light pollution; radiative transfer; atmospheric effects; scattering; methods; numerical; sensitivity analysis
Abstract Propagation of artificial light at night (ALAN) in the environment is now known to have non negligible consequences on fauna, flora and human health. These consequences depend on light levels and their spectral power distributions, which in turn rely on the efficiency of various physical processes involved in the radiative transfer of this light into the atmosphere and its interactions with the built and natural environment. ALAN can affect the living organisms by direct lighting and indirect lighting (scattered by the sky and clouds and/or reflected by local surfaces). This paper mainly focuses on the behaviour of the indirect light scattered under clear sky conditions. Various interaction processes between anthropogenic light sources and the natural environment are discussed. This work mostly relies on a sensitivity analysis conducted with the light pollution radiative transfer model, Illumina (Aubé et al. 2005: Light pollution modelling and detection in a heterogeneous environment: toward a night-time aerosol optical depth retrieval method. In Proc. SPIE 2005, vol. 5890, San Diego, California, USA). More specifically, the impact of (i) the molecular and aerosol scattering and absorption, (ii) the second order of scattering, (iii) the topography and obstacle blocking, (iv) the ground reflectance and (v) the spectrum of light devices and their angular emission functions are examined. This analysis considers different behaviour as a function of the distance from the city centre, along with different zenith viewing angles in the principal plane.
Address Département de physique, Cégep de Sherbrooke, Sherbrooke, Quebec, Canada
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1115
Permanent link to this record
 

 
Author Gaston, K.J.; Visser, M.E.; Hölker, F.
Title The biological impacts of artificial light at night: the research challenge Type Journal Article
Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci
Volume 370 Issue Pages 20140133
Keywords Commentary; communities; dose-response; individuals; light spectrum; night-time
Abstract
Address 1 Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK; k.j.gaston@exeter.ac.uk
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1116
Permanent link to this record