|   | 
Details
   web
Records
Author Bará, S.
Title Naked-eye astronomy: optics of the starry night skies Type Journal Article
Year 2014 Publication Proc. SPIE 9289, 12th Education and Training in Optics and Photonics Conference, 2014 Abbreviated Journal Proc. SPIE 9289
Volume 9289 Issue Pages
Keywords Society; light pollution
Abstract The world at night offers a wealth of stimuli and opportunities as a resource for Optics education, at all age levels and from any (formal, non formal or informal) perspective. The starry sky and the urban nightscape provide a unique combination of pointlike sources with extremely different emission spectra and brightness levels on a generally darker, locally homogeneous background. This fact, combined with the particular characteristics of the human visual system under mesopic and scotopic conditions, provides a perfect setting for experiencing first-hand different optical phenomena of increasing levels of complexity: from the eye's point spread function to the luminance contrast threshold for source detection, from basic diffraction patterns to the intricate irradiance fluctuations due to atmospheric turbulence. Looking at the nightscape is also a perfect occasion to raise awareness on the increasing levels of light pollution associated to the misuse of public and private artificial light at night, to promote a sustainable use of lighting, and to take part in worldwide citizen science campaigns. Last but not least, night sky observing activities can be planned and developed following a very flexible schedule, allowing individual students to carry them out from home and sharing the results in the classroom as well as organizing social events and night star parties with the active engagement of families and groups of the local community. This contribution describes these possibilities and introduces some of the free resources available to put them in practice.
Address Univ. de Santiago de Compostela, Spain; salva.bara@usc.es
Corporate Author Thesis
Publisher SPIE Place of Publication Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1134
Permanent link to this record
 

 
Author Bará, S.
Title Light pollution and solid-state lighting: reducing the carbon dioxide footprint is not enough Type Journal Article
Year 2014 Publication Proc. SPIE 8785, 8th Iberoamerican Optics Meeting and 11th Latin American Meeting on Optics, Lasers, and Applications, 87852G, 2013 Abbreviated Journal Proc. SPIE 8785
Volume 8785 Issue Pages
Keywords *Lighting; LED; light emitting diode; outdoor lighting; artificial light at night; lighting policy; solid-state lighting; blue light
Abstract Public and private lighting account for a relevant share of the overall electric power consumption worldwide. The pressing need of reducing the carbon dioxide emissions as well as of lowering the lumen•hour price tag has fostered the search for alternative lighting technologies to substitute for the incandescent and gas-discharge based lamps. The most successful approach to date, solid-state lighting, is already finding its way into the public lighting market, very often helped by substantial public investments and support. LED-based sources have distinct advantages: under controlled conditions their efficacy equals or surpasses that of conventional solutions, their small source size allows for an efficient collimation of the lightbeam (delivering the photons where they are actually needed and reducing lightspill on the surrounding areas), and they can be switched and/or dimmed on demand at very high rates, thus allowing for a tailored schedule of lighting. However, energy savings and carbon dioxide reduction are not the only crucial issues faced by present day lighting. A growing body of research has shown the significance of the spectral composition of light when it comes to assess the detrimental effects of artificial light-at-night (ALAN). The potential ALAN blueshift associated to the deployment of LED-based lighting systems has raised sensible concerns about its scientific, cultural, ecological and public health consequences, which can be further amplified if an increased light consumption is produced due to the rebound effect. This contribution addresses some of the challenges that these issues pose to the Optics and Photonics community.
Address Univ. de Santiago de Compostela, Spain; salva.bara@usc.es
Corporate Author Thesis
Publisher SPIE Place of Publication Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1135
Permanent link to this record
 

 
Author Oliveira, A.G.; Stevani, C.V.; Waldenmaier, H.E.; Viviani, V.; Emerson, J.M.; Loros, J.J.; Dunlap, J.C.
Title Circadian Control Sheds Light on Fungal Bioluminescence Type Journal Article
Year 2015 Publication Current Biology Abbreviated Journal Curr. Biol.
Volume 25 Issue 7 Pages R283-R285
Keywords Animals; bioluminescence; fungi; Agaricales; NADH; NADPH; Neonothopanus gardneri; *Circadian Clocks; luciferase; reductase; biology; luciferin; coleopterans; hemipterans; dipterans; hymenopterans; ecology
Abstract Bioluminescence, the creation and emission of light by organisms, affords insight into the lives of organisms doing it. Luminous living things are widespread and access diverse mechanisms to generate and control luminescence. Among the least studied bioluminescent organisms are phylogenetically rare fungi—only 71 species, all within the ∼9,000 fungi of the temperate and tropical Agaricales order—are reported from among ∼100,000 described fungal species. All require oxygen and energy (NADH or NADPH) for bioluminescence and are reported to emit green light (λmax 530 nm) continuously, implying a metabolic function for bioluminescence, perhaps as a byproduct of oxidative metabolism in lignin degradation. Here, however, we report that bioluminescence from the mycelium of Neonothopanus gardneri is controlled by a temperature-compensated circadian clock, the result of cycles in content/activity of the luciferase, reductase, and luciferin that comprise the luminescent system. Because regulation implies an adaptive function for bioluminescence, a controversial question for more than two millennia, we examined interactions between luminescent fungi and insects. Prosthetic acrylic resin “mushrooms,” internally illuminated by a green LED emitting light similar to the bioluminescence, attract staphilinid rove beetles (coleopterans), as well as hemipterans (true bugs), dipterans (flies), and hymenopterans (wasps and ants), at numbers far greater than dark control traps. Thus, circadian control may optimize energy use for when bioluminescence is most visible, attracting insects that can in turn help in spore dispersal, thereby benefitting fungi growing under the forest canopy, where wind flow is greatly reduced.
Address Departamento de Oceanografia Física, Química, e Geológica, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, SP 05508-120, Brazil
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1141
Permanent link to this record
 

 
Author Rydin, C; Bolinder, K
Title Moonlight pollination in the gymnosperm Ephedra (Gnetales) Type Journal Article
Year 2015 Publication Biology Letters Abbreviated Journal Biol. Lett.
Volume 11 Issue 4 Pages 20140993
Keywords Plants; anemophily; entomophily; lunar phases; nocturnal insects; lunar cycle; light at night; Ephedra; Ephedra distachya; pollination
Abstract Most gymnosperms are wind-pollinated, but some are insect-pollinated, and in Ephedra (Gnetales), both wind pollination and insect pollination occur. Little is, however, known about mechanisms and evolution of pollination syndromes in gymnosperms. Based on four seasons of field studies, we show an unexpected correlation between pollination and the phases of the moon in one of our studied species, Ephedra foeminea. It is pollinated by dipterans and lepidopterans, most of them nocturnal, and its pollination coincides with the full moon of July. This may be adaptive in two ways. Many nocturnal insects navigate using the moon. Further, the spectacular reflection of the full-moonlight in the pollination drops is the only apparent means of nocturnal attraction of insects in these plants. In the sympatric but wind-pollinated Ephedra distachya, pollination is not correlated to the full moon but occurs at approximately the same dates every year. The lunar correlation has probably been lost in most species of Ephedra subsequent an evolutionary shift to wind pollination in the clade. When the services of insects are no longer needed for successful pollination, the adaptive value of correlating pollination with the full moon is lost, and conceivably also the trait.
Address Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm 106 91, Sweden
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1143
Permanent link to this record
 

 
Author Navarro-Barrancoa, C.; Hughes, L.E.
Title Effects of light pollution on the emergent fauna of shallow marine ecosystems: Amphipods as a case study Type Journal Article
Year 2015 Publication Marine Pollution Bulletin Abbreviated Journal Marine Poll. Bull.
Volume 94 Issue 1-2 Pages 235–240
Keywords Animals; Light pollution; Emergent fauna; Amphipoda; Coastal management; Great Barrier Reef; Australia; LED; halogen
Abstract Light pollution from coastal urban development is a widespread and increasing threat to biodiversity. Many amphipod species migrate between the benthos and the pelagic environment and light seems is a main ecological factor which regulates migration. We explore the effect of artificial lighting on amphipod assemblages using two kind of lights, LED and halogen, and control traps in shallow waters of the Great Barrier Reef. Both types of artificial light traps showed a significantly higher abundance of individuals for all species in comparison to control traps. LED lights showed a stronger effect over the amphipod assemblages, with these traps collecting a higher number of individuals and differing species composition, with some species showing a specific attraction to LED light. As emergent amphipods are a key ecological group in the shallow water environment, the impact of artificial light can affect the broader functioning of the ecosystem.
Address Laboratorio de Biología Marina, Dpto. Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6, 41012 Sevilla, Spain; carlosnavarro@us.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1144
Permanent link to this record