|   | 
Details
   web
Records
Author Fan, J., He, H., Hu, T., Zhang, P., Yu, X., & Zhou, Y.
Title Estimation of Landscape Pattern Changes in BRICS from 1992 to 2013 Using DMSP-OLS NTL Images Type Journal Article
Year 2019 Publication Journal of the Indian Society of Remote Sensing Abbreviated Journal J Ind Soc Rem Sens
Volume 47 Issue 5 Pages 725–735
Keywords Remote Sensing; BRICS; Brazil; India; China; South Africa; nighttime light; night lights; DMSP-OLS
Abstract Nighttime light data from the Defense Meteorological Satellite Program’s Operational Linescan System are widely used for monitoring urbanization development. Brazil, Russia, India, China and South Africa (BRICS) countries have global economic and cultural influence in the new era. It was the first time for the researches about BRICS countries adopting nighttime light data to analyze the urbanization process. In this paper, we calibrated and extracted annual urbanized area patches from cities in BRICS based on a quadratic polynomial model. Nine landscape indexes were calculated to analyze urbanization process characteristics in BRICS. The results suggested that China and India both expanded more rapidly than other countries, with urban areas that increased by more than 100%. The expansion of large core cities was dominant in the urbanization of China, while emerging and expanding small urban patches were major forces in the urbanization of India. Since 1992, urbanization declined and urban areas shrunk in Russia, but core cities still maintained strength of urbanization. Due to economic recovery, urban areas near large cities in Russia began to expand. From 1992 to 2013, the urbanization process in South Africa developed slowly, as evidenced by time series fluctuations, but overall the development remained stable. The degree of urbanization in Brazil was greater than that in South Africa but less than that in Russia. Large-sized cities expanded slowly and small-sized cities clearly expanded in BRICS from 1992 to 2013.
Address School of Civil and Architectural Engineering,Shandong University of Technology, Zibo, China; anjf(at)sdut.edu.cn
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2307
Permanent link to this record
 

 
Author Garrett, J. K., Donald, P. F., & Gaston, K. J.
Title Skyglow extends into the world’s Key Biodiversity Areas Type Journal Article
Year 2019 Publication Animal Conservation Abbreviated Journal
Volume Issue Pages cv.12480
Keywords Skyglow; Conservation; Biodiversity; Key Biodiversity Area; KBA
Abstract The proportion of the Earth’s surface that experiences a naturally dark environment at night is rapidly declining with the introduction of artificial light. Biological impacts of this change have been documented from genes to ecosystems, and for a wide diversity of environments and organisms. The likely severity of these impacts depends heavily on the relationship between the distribution of artificial night-time lighting and biodiversity. Here, we carry out a global assessment of the overlap between areas of conservation priority and the most recent atlas of artificial skyglow. We show that of the world’s Key Biodiversity Areas (KBAs), less than a third have completely pristine night-time skies, about a half lie entirely under artificially bright skies and only about a fifth contain no area in which night-time skies are not polluted to the zenith. The extent of light pollution of KBAs varies by region, affecting the greatest proportion of KBAs in Europe and the Middle East. Statistical modelling revealed associations between light pollution within KBAs and associated levels of both gross domestic product and human population density. This suggests that these patterns will worsen with continued economic development and growth in the human population
Address Environment & Sustainability Institute, University of Exeter, Penryn, UK; j.k.garrett(at)exeter.ac.uk
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2309
Permanent link to this record
 

 
Author Gong, P.; Li, X.; Zhang, W.
Title 40-year (1978-2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing Type Journal Article
Year 2019 Publication Science Bulletin Abbreviated Journal Science Bulletin
Volume 64 Issue 11 Pages 756-763
Keywords Remote Sensing; China; human settlement
Abstract Impervious surfaces are the most significant feature of human settlements. Timely, accurate, and frequent information on impervious surfaces is critical in both social-economic and natural environment applications. Over the past 40 years, impervious surface areas in China have grown rapidly. However, annual maps of impervious areas in China with high spatial details do not exist during this period. In this paper, we made use of reliable impervious surface mapping algorithms that we published before and the Google Earth Engine (GEE) platform to address this data gap. With available data in GEE, we were able to map impervious surfaces over the entire country circa 1978, and during 1985-2017 at an annual frequency. The 1978 data were at 60 m resolution, while the 1985-2017 data were in 30 m resolution. For the 30 m resolution data, we evaluated the accuracies for 1985, 1990, 1995, 2000, 2005, 2010, and 2015. Overall accuracies reached more than 90%. Our results indicate that the growth of impervious surface in China was not only fast but also considerably exceeding the per capita impervious surface area in developed countries like Japan. The 40-year continuous and consistent impervious surface distribution data in China would generate widespread interests in the research and policy-making community. The impervious surface data can be freely downloaded from http://data.ess.tsinghua.edu.cn.
Address Ministry of Education Key Laboratory of Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China; penggong(at)tsinghua.edu.cn
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-9273 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2321
Permanent link to this record
 

 
Author Pu, G.; Zen, D.; Mo, L.; He, W.; Zhou, L.; Huang, K.; Liao, J.; Qiu, S.; Chai, S.
Title Does artificial light at night change the impact of silver nanoparticles on microbial decomposers and leaf litter decomposition in streams? Type Journal Article
Year 2019 Publication Environmental Science: Nano Abbreviated Journal Environ. Sci.: Nano
Volume 6 Issue Pages 1728-1739
Keywords Ecology; silver nanoparticles; aquatic ecosystems
Abstract The toxic effects of silver nanoparticles (AgNP) to aquatic species and ecosystem processes have been the focus of increasing research in ecology, but their effects under different environmental stressors, such as the ongoing anthropogenic artificial light at night (ALAN) which can cause a series of ecological effects and will potentially interact with other stressors, remain poorly understood. Here, we aimed to assess the combined effects of AgNP and ALAN on the activities and community structure of fungi and bacteria associated to plant litter in a stream. The results showed that ALAN not only led to changes in the average hydrodynamic diameter, ζ-potential and dissolved concentration of AgNP but also inhibited the enzyme activities of leucine-aminopeptidase (LAP), polyphenol oxidase (PPO) and peroxidase (PER) associated to microbes involved in litter decomposition. The negative effect of AgNP on the decomposition of Pterocarya stenoptera leaf litter was alleviated by ALAN owing to the reduction of Ag+ concentration in the microcosm and lignin content in the leaf litter in the A-AgNP treatments, the enhancement of β-glucosidase (β-G) activities and the increase of microbial biomass. The effect of ALAN alone or combined with AgNP or AgNO3 on the taxonomic composition of fungi was much greater than that on bacteria. Linear discriminant analysis effect size (LEfSe) demonstrated that each treatment had its own fungal and bacterial indicator taxa, from the phylum to genus levels, indicating that the microbial communities associated with litter decomposition can change their constituent taxa to cope with different stressors. These results reveal that ALAN can decrease the toxicity of AgNP and highlight the importance of considering ALAN during the assessment of the risk posed by nanoparticles to freshwater biota and ecosystem processes.
Address Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China; pukouchy(at)hotmail.com
Corporate Author Thesis
Publisher Royal Astronomical Society of Chemistry Place of Publication Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2051-8153 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2332
Permanent link to this record
 

 
Author Gallaway, T.; Olsen, R.N.; Mitchell, D.M.
Title Blinded by the Light: Economic Analysis of Severe Light Pollution Type Journal Article
Year 2013 Publication Journal of Economic Insight Abbreviated Journal J Econ Insight
Volume 39 Issue 1 Pages 45-63
Keywords Economics; light pollution
Abstract This paper examines severe light pollution such as commonly found in large urban areas. Light pollution is the unintended negative consequences of poorly designed and injudiciously used artificial lighting. Light pollution generates significant costs including wasted energy and damage to human health, wildlife, recreation, and the beauty of the night sky. Typically, light-pollution models emphasize population density and ignore economic factors. Economic analysis of the issue has been singularly limited. Previous economic research has focused on widespread, but very low levels of light pollution. This paper makes a unique contribution by analyzing economic factors of severe light pollution. The paper utilizes economic data from the World Bank and unique remote sensing data for 184 countries to quantify the economic causes of severe light pollution. Fractional logit models confirm the importance of population and economic factors alike.
Address Department of Economics, Missouri State University; TerrelGallaway(at)missouristate.edu
Corporate Author Thesis
Publisher Missouri Valley Economic Association Place of Publication Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0361-6576 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2338
Permanent link to this record