toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Spoelstra, K.; van Grunsven, R.H.A.; Donners, M.; Gienapp, P.; Huigens, M.E.; Slaterus, R.; Berendse, F.; Visser, M.E.; Veenendaal, E. url  doi
openurl 
  Title Experimental illumination of natural habitat—an experimental set-up to assess the direct and indirect ecological consequences of artificial light of different spectral composition Type Journal Article
  Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci  
  Volume 370 Issue Pages 20140129  
  Keywords Lighting; experimental lighting; population dynamics; daily timing; seasonal timing; cascading effects; citizen science; Pipistrellus pipistrellus; bats; pipistrelle bat; wood mouse; birds  
  Abstract Artificial night-time illumination of natural habitats has increased dramatically over the past few decades. Generally, studies that assess the impact of artificial light on various species in the wild make use of existing illumination and are therefore correlative. Moreover, studies mostly focus on short-term consequences at the individual level, rather than long-term consequences at the population and community level—thereby ignoring possible unknown cascading effects in ecosystems. The recent change to LED lighting has opened up the exciting possibility to use light with a custom spectral composition, thereby potentially reducing the negative impact of artificial light. We describe here a large-scale, ecosystem-wide study where we experimentally illuminate forest-edge habitat with different spectral composition, replicated eight times. Monitoring of species is being performed according to rigid protocols, in part using a citizen-science-based approach, and automated where possible. Simultaneously, we specifically look at alterations in behaviour, such as changes in activity, and daily and seasonal timing. In our set-up, we have so far observed that experimental lights facilitate foraging activity of pipistrelle bats, suppress activity of wood mice and have effects on birds at the community level, which vary with spectral composition. Thus far, we have not observed effects on moth populations, but these and many other effects may surface only after a longer period of time.  
  Address 1 Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands; k.spoelstra@nioo.knaw.nl  
  Corporate Author Thesis  
  Publisher Royal Society Place of Publication Editor  
  Language English Summary Language (down) English Original Title  
  Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1126  
Permanent link to this record
 

 
Author Hölker, F.; Wurzbacher, C.; Weißenborn, C.; Monaghan, M.T.; Holzhauer, S.I.J.; Premke, K. url  doi
openurl 
  Title Microbial diversity and community respiration in freshwater sediments influenced by artificial light at night Type Journal Article
  Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci  
  Volume 370 Issue Pages 20140130  
  Keywords Animals; DNA metabarcoding; next-generation sequencing; light pollution; photoautotrophs; diatoms; Cyanobacteria; primary production; carbon turnover; freshwater  
  Abstract An increasing proportion of the Earth's surface is illuminated at night. In aquatic ecosystems, artificial light at night (ALAN) may influence microbial communities living in the sediments. These communities are highly diverse and play an important role in the global carbon cycle. We combined field and laboratory experiments using sediments from an agricultural drainage system to examine how ALAN affects communities and alters carbon mineralization. Two identical light infrastructures were installed parallel to a drainage ditch before the start of the experiment. DNA metabarcoding indicated that both sediment communities were similar. After one was lit for five months (July–December 2012) we observed an increase in abundance (diatoms, Cyanobacteria) in ALAN-exposed sediments. In laboratory incubations mimicking summer and winter (six weeks each), communities in sediments that were exposed to ALAN for 1 year (July 2012–June 2013) showed less overall seasonal change compared with ALAN-naive sediments. Nocturnal community respiration was reduced in ALAN-exposed sediments. In long-term exposed summer-sediments, we observed a shift from negative to positive net ecosystem production. Our results indicate ALAN may alter sediment microbial communities over time, with implications for ecosystem-level functions. It may thus have the potential to transform inland waters to nocturnal carbon sinks.  
  Address Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Mu¨ggelseedamm 301/310, Berlin 12587, Germany; hoelker@igb-berlin.de  
  Corporate Author Thesis  
  Publisher Royal Society Place of Publication Editor  
  Language English Summary Language (down) English Original Title  
  Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1127  
Permanent link to this record
 

 
Author Bennie, J.; Davies, T.W.; Cruse, D.; Inger, R.; Gaston, K.J. url  doi
openurl 
  Title Cascading effects of artificial light at night: resource-mediated control of herbivores in a grassland ecosystem Type Journal Article
  Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci  
  Volume 2015 Issue Pages 20140131  
  Keywords Ecology; light pollution; photopollution; artificial light at night; biotic interactions; community-level; bottom-up effects; grasslands; herbivores; invertebrates; pea aphid; Acyrthosiphon pisum; plants; insects  
  Abstract Artificial light at night has a wide range of biological effects on both plants and animals. Here, we review mechanisms by which artificial light at night may restructure ecological communities by modifying the interactions between species. Such mechanisms may be top-down (predator, parasite or grazer controlled), bottom-up (resource-controlled) or involve non-trophic processes, such as pollination, seed dispersal or competition. We present results from an experiment investigating both top-down and bottom-up effects of artificial light at night on the population density of pea aphids Acyrthosiphon pisum in a diverse artificial grassland community in the presence and absence of predators and under low-level light of different spectral composition. We found no evidence for top-down control of A. pisum in this system, but did find evidence for bottom-up effects mediated through the impact of light on flower head density in a leguminous food plant. These results suggest that physiological effects of light on a plant species within a diverse plant community can have detectable demographic effects on a specialist herbivore.  
  Address Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK; k.j.gaston@exeter.ac.uk  
  Corporate Author Thesis  
  Publisher Royal Society Place of Publication Editor  
  Language English Summary Language (down) English Original Title  
  Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1128  
Permanent link to this record
 

 
Author Yu, B.; Shi, K.; Hu, Y.; Huang, C. url  doi
openurl 
  Title Poverty Evaluation Using NPP-VIIRS Nighttime Light Composite Data at the County Level in China Type Journal Article
  Year 2015 Publication IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Abbreviated Journal IEEE J. Selected Topics in Appl. Earth Obs. and Rem. Sens.  
  Volume Issue 2399416 Pages  
  Keywords Remote Sensing; China; VIIRS; NPP; Suomi; DNB; poverty; development; Chongqing; integrated poverty index; average light index; national poor counties  
  Abstract Poverty has appeared as one of the long-term predicaments facing development of human society during the 21st century. Estimation of regional poverty level is a key issue for making strategies to eliminate poverty. This paper aims to evaluate the ability of the nighttime light composite data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day–Night Band (DNB) carried by the Suomi National Polar-orbiting Partnership (NPP) Satellite in estimating poverty at the county level in China. Two major experiments are involved in this study, which include 1) 38 counties of Chongqing city and 2) 2856 counties of China. The first experiment takes Chongqing as an example and combines 10 socioeconomic variables into an integrated poverty index (IPI). IPI is then used as a reference to validate the accuracy of poverty evaluation using the average light index (ALI) derived from NPP-VIIRS data. Linear regression and comparison of the class ranks have been employed to verify the correlation between ALI and IPI. The results show a good correlation between IPI and ALI, with a coefficient of determination ($R^2$) of 0.8554, and the class ranks of IPI and API show relative closeness at the county level. The second experiment examines all counties in China and makes a comparison between ALI values and national poor counties (NPC). The comparison result shows a general agreement between the NPC and the counties with low ALI values. This study reveals that the NPP-VIIRS data can be a useful tool for evaluating poverty at the county level in China.  
  Address Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language English Summary Language (down) English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1130  
Permanent link to this record
 

 
Author Leinert, C.; Bowyer, S.; Haikala, L.K.; Hanner, M.S.; Hauser, M.G.; Levasseur-Regourd, A.-C.; Mann, I.; Mattila, K.; Reach, W.T.; Schlosser, W.; Staude, H.J.; Toller, G.N.; Weiland, J.L.; Weinberg, J.L.; Witt, A.N. url  doi
openurl 
  Title The 1997 reference of diffuse night sky brightness Type Journal Article
  Year 1998 Publication Astronomy and Astrophysics Supplement Series Abbreviated Journal Astron. Astrophys. Suppl. Ser.  
  Volume 127 Issue 1 Pages 1-99  
  Keywords Skyglow; darkness; Sky brightness  
  Abstract In the following we present material in tabular and graphical form, with the aim to allow the non-specialist to obtain a realistic estimate of the diffuse night sky brightness over a wide range of wavelengths from the far UV longward of Lyalpha to the far-infrared. At the same time the data are to provide a reference for cases in which background brightness has to be discussed, including the planning for space observations and the issue of protection of observatory sites. We try to give a critical presentation of the status at the beginning of 1997. Prepared by members of Commission 21 ``Light of the night sky'' of the IAU, including most of the recent (vice-)presidents.  
  Address Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany  
  Corporate Author Thesis  
  Publisher EDP Sciences Place of Publication Editor  
  Language English Summary Language (down) English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0365-0138 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1132  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: