toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tuxbury, S.M.; Salmon, M. url  doi
openurl 
  Title Competitive interactions between artificial lighting and natural cues during seafinding by hatchling marine turtles Type Journal Article
  Year 2005 Publication Biological Conservation Abbreviated Journal Biological Conservation  
  Volume 121 Issue 2 Pages 311-316  
  Keywords Sea turtle; Orientation; Photopollution; Habitat restoration; animals; reptiles; marine turtles; conservation  
  Abstract Artificial lighting disrupts the nocturnal orientation of sea turtle hatchlings as they crawl from their nest to the ocean. Laboratory experiments in an arena were used to simultaneously present artificial light (that attracted the turtles toward “land”) and natural cues (a dark silhouette of the dune behind the beach) that promoted “seaward” orientation. Artificial lighting disrupted seaward crawling in the presence of low silhouettes, but not high silhouettes. Low silhouettes provided adequate cues for seaward crawling when the apparent brightness of artificial light was reduced. Based upon these results, we postulate that artificial light disrupts orientation by competing with natural cues. Current restoration practices at nesting beaches emphasize light reduction. However at many sites some lights cannot be modified. Our results suggest that pairing dune restoration (to enhance natural cues) with light reduction (to the extent possible) should significantly improve hatchling orientation, even at nesting beaches where lighting cannot be entirely eliminated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3207 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 79  
Permanent link to this record
 

 
Author Vignoli, L.; Luiselli, L. url  doi
openurl 
  Title Better in the dark: two Mediterranean amphibians synchronize reproduction with moonlit nights Type Journal Article
  Year 2013 Publication Web Ecology Abbreviated Journal Web Ecol.  
  Volume 13 Issue 1 Pages 1-11  
  Keywords animals; amphibians; Hyla intermedia; Rana dalmatina; *Reproduction; reproductive strategies; Moon; moon phase; moonlight  
  Abstract In Amphibians, both positive and negative correlations between activity and full moon phase have been observed. In this study, we present data for two anuran species (Hyla intermedia and Rana dalmatina) studied in a hilly Mediterranean area of central Italy. We analysed, in a two-year survey, the relationships between the number of egg clutches laid each night and the moon phases by means of circular statistics. Moreover, the studied species exhibited clear oviposition site selection behaviour influenced, at least in H. intermedia, by moon phases. We observed the occurrence of an avoidance effect by amphibians for oviposition and specific egg-laying behaviour during moon phases around the full moon. This apparent lunar phobia was evident in both species when yearly data were pooled. On the other hand, while this pattern continued to be also evident in H. intermedia when single years were considered, in R. dalmatina it stood just in one year of study. Nonetheless, during cloudy nights, when moonlight arriving on the ground was low, the frogs' behaviour was similar to that observed in new moon phases. We interpreted the observed pattern as an anti-predatory strategy. Overall, comparisons between our own study and previous research suggest that there was insufficient evidence to establish any unequivocal patterns and that further research in this regard is needed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1399-1183 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 80  
Permanent link to this record
 

 
Author Grant, R.; Halliday, T.; Chadwick, E. url  doi
openurl 
  Title Amphibians' response to the lunar synodic cycle--a review of current knowledge, recommendations, and implications for conservation Type Journal Article
  Year 2013 Publication Behavioral Ecology Abbreviated Journal Behavioral Ecology  
  Volume 24 Issue 1 Pages 53-62  
  Keywords amphibians; circular statistics; light; lunar cycle; moon phase; predator avoidance; reproductive synchronization; moonlight  
  Abstract The way in which amphibians respond to the geophysical changes brought about by the lunar synodic cycle is a neglected area of their ecology, but one which has recently generated interest. Knowledge of how amphibians respond to lunar phase is of intrinsic interest and also may be important for conservation and monitoring of populations. We surveyed the literature on amphibians’ responses to the lunar cycle and found 79 examples where moon phase in relation to amphibian behavior and ecology had been studied, across diverse amphibian taxa. Of the examples reviewed, most of them show some type of response to lunar phase, with only a few species being unaffected. We found that there is no significant difference between the numbers of species which increase, and those that decrease activity or reproductive behavior (including calling) during a full moon. The responses to the lunar cycle can not be generalized across taxonomic group, but instead are highly species specific and relate directly to the species’ ecology. The primary reasons for changes in amphibian behavior in response to the lunar cycle appear to be temporal synchronization of breeding and predator avoidance. Responses to changes in prey availability, facilitation of visual signalling and use of lunar cues in navigation and homing are less prevalent but merit further investigation. Comparisons between studies are hampered by differences in field and analytical methods; we therefore make a number of recommendations for future collection and analysis of data related to lunar phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1045-2249 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 81  
Permanent link to this record
 

 
Author Ikeno, T.; Weil, Z.M.; Nelson, R.J. url  doi
openurl 
  Title Dim light at night disrupts the short-day response in Siberian hamsters Type Journal Article
  Year 2014 Publication General and Comparative Endocrinology Abbreviated Journal Gen Comp Endocrinol  
  Volume 197 Issue Pages 56-64  
  Keywords 2,4-dinitro-1-flourobenzene; Dnfb; Dth; Eya3; Eyes absent 3; GnIH; GnRH; Immune function; Ld; Lps; Light pollution; Pt; Pelage; Per1; Period1; Photoperiodism; Rfrp; RFamide-related peptide; Scn; Sd; Seasonality; Tsh; TSH receptor; Tshr; dLAN; delayed-type hypersensitivity; dim light at night; gonadotropin-inhibiting hormone; gonadotropin-releasing hormone; lipopolysaccharide; long days; pars tuberalis; short days; suprachiasmatic nuclei; thyroid-stimulating hormone  
  Abstract Photoperiodic regulation of physiology, morphology, and behavior is crucial for many animals to survive seasonally variable conditions unfavorable for reproduction and survival. The photoperiodic response in mammals is mediated by nocturnal secretion of melatonin under the control of a circadian clock. However, artificial light at night caused by recent urbanization may disrupt the circadian clock, as well as the photoperiodic response by blunting melatonin secretion. Here we examined the effect of dim light at night (dLAN) (5lux of light during the dark phase) on locomotor activity rhythms and short-day regulation of reproduction, body mass, pelage properties, and immune responses of male Siberian hamsters. Short-day animals reduced gonadal and body mass, decreased spermatid nuclei and sperm numbers, molted to a whiter pelage, and increased pelage density compared to long-day animals. However, animals that experienced short days with dLAN did not show these short-day responses. Moreover, short-day specific immune responses were altered in dLAN conditions. The nocturnal activity pattern was blunted in dLAN hamsters, consistent with the observation that dLAN changed expression of the circadian clock gene, Period1. In addition, we demonstrated that expression levels of genes implicated in the photoperiodic response, Mel-1a melatonin receptor, Eyes absent 3, thyroid stimulating hormone receptor, gonadotropin-releasing hormone, and gonadotropin-inhibitory hormone, were higher in dLAN animals than those in short-day animals. These results suggest that dLAN disturbs the circadian clock function and affects the molecular mechanisms of the photoperiodic response.  
  Address Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA. Electronic address: randy.nelson@osumc.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-6480 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24362257 Approved no  
  Call Number IDA @ john @ Serial 82  
Permanent link to this record
 

 
Author Prugh, L.R.; Golden, C.D. url  doi
openurl 
  Title Does moonlight increase predation risk? Meta-analysis reveals divergent responses of nocturnal mammals to lunar cycles Type Journal Article
  Year 2013 Publication The Journal of Animal Ecology Abbreviated Journal J Anim Ecol  
  Volume 83 Issue 2 Pages 504-514  
  Keywords foraging efficiency; giving-up density; illumination; indirect effects; lunar cycles; moonlight; nocturnality; phylogenetic meta-analysis; predation risk; risk-sensitive foraging  
  Abstract The risk of predation strongly affects mammalian population dynamics and community interactions. Bright moonlight is widely believed to increase predation risk for nocturnal mammals by increasing the ability of predators to detect prey, but the potential for moonlight to increase detection of predators and the foraging efficiency of prey has largely been ignored. Studies have reported highly variable responses to moonlight among species, calling into question the assumption that moonlight increases risk. Here, we conducted a quantitative meta-analysis examining the effects of moonlight on the activity of 59 nocturnal mammal species to test the assumption that moonlight increases predation risk. We examined patterns of lunarphilia and lunarphobia across species in relation to factors such as trophic level, habitat cover preference and visual acuity. Across all species included in the meta-analysis, moonlight suppressed activity. The magnitude of suppression was similar to the presence of a predator in experimental studies of foraging rodents (13.6% and 18.7% suppression, respectively). Contrary to the expectation that moonlight increases predation risk for all prey species, however, moonlight effects were not clearly related to trophic level and were better explained by phylogenetic relatedness, visual acuity and habitat cover. Moonlight increased the activity of prey species that use vision as their primary sensory system and suppressed the activity of species that primarily use other senses (e.g. olfaction, echolocation), and suppression was strongest in open habitat types. Strong taxonomic patterns underlay these relationships: moonlight tended to increase primate activity, whereas it tended to suppress the activity of rodents, lagomorphs, bats and carnivores. These results indicate that visual acuity and habitat cover jointly moderate the effect of moonlight on predation risk, whereas trophic position has little effect. While the net effect of moonlight appears to increase predation risk for most nocturnal mammals, our results highlight the importance of sensory systems and phylogenetic history in determining the level of risk.  
  Address Institute of Arctic Biology, University of Alaska Fairbanks, 311 Irving 1, Fairbanks, AK, 99775, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8790 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24102189 Approved no  
  Call Number IDA @ john @ Serial 83  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: