toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bennie, J.; Davies, T.W.; Inger, R.; Gaston, K.J.; Chisholm, R. url  doi
openurl 
  Title Mapping artificial lightscapes for ecological studies Type Journal Article
  Year 2014 Publication Methods in Ecology and Evolution Abbreviated Journal Methods Ecol Evol  
  Volume 5 Issue 6 Pages 534-540  
  Keywords light pollution; urban ecology; landscape ecology; diurnal; nocturnal; night; light  
  Abstract Artificial illumination of the night is increasing globally. There is growing evidence of a range of ecological impacts of artificial light and awareness of light pollution as a significant environmental issue. In urban and suburban areas, complex spatial patterns of light sources, structures and vegetation create a highly heterogeneous night-time light environment for plants and animals.

We developed a method for modelling the night-time light environment at a high spatial resolution in a small urban area for ecological studies. We used the position and height of street lights, and digital terrain and surface models, to predict the direct light intensity at different wavelengths at different heights above the ground surface.

Validation against field measurements of night-time light showed that modelled light intensities in the visible and ultraviolet portions of the spectrum were accurate.

We show how this model can be used to map biologically relevant lightscapes across an urban landscape. We also illustrate the utility of the model using night-time light maps as resistance surfaces in the software package circuitscape to predict potential movement of model nocturnal species between habitat patches and to identify key corridors and barriers to movement and dispersal.

Understanding the ecological effects of artificial light requires knowledge of the light environment experienced by organisms throughout the diurnal and annual cycles, during periods of activity and rest and during different life stages. Our approach to high-resolution mapping of artificial lightscapes can be adapted to the sensitivity to light of different species and to other urban, suburban, rural and industrial landscapes.
 
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041210X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 171  
Permanent link to this record
 

 
Author Cinzano, P.; Elvidge, C.D. url  doi
openurl 
  Title Night sky brightness at sites from DMSP-OLS satellite measurements Type Journal Article
  Year 2004 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS  
  Volume 353 Issue 4 Pages 1107-1116  
  Keywords scattering; atmospheric effects; light pollution; site testing; GTOPO30; DMSP  
  Abstract We apply the sky brightness modelling technique introduced and developed by Roy Garstang to high-resolution satellite measurements of upward artificial light flux carried out with the US Air Force Defense Meteorological Satellite Program Operational Linescan System and to GTOPO30 (a global digital elevation model by the US Geological Survey's EROS Data Centre) digital elevation data in order to predict the brightness distribution of the night sky at a given site in the primary astronomical photometric bands for a range of atmospheric aerosol contents. This method, based on global data and accounting for elevation, Earth curvature and mountain screening, allows the evaluation of sky glow conditions over the entire sky for any site in the world, to evaluate its evolution, to disentangle the contribution of individual sources in the surrounding territory and to identify the main contributing sources. Sky brightness, naked eye stellar visibility and telescope limiting magnitude are produced as three-dimensional arrays, the axes of which are the position on the sky and the atmospheric clarity. We compare our results with available measurements.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 172  
Permanent link to this record
 

 
Author Cinzano, P.; Falchi, F.; Elvidge, C.D. url  doi
openurl 
  Title The first World Atlas of the artificial night sky brightness Type Journal Article
  Year 2001 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS  
  Volume 328 Issue 3 Pages 689-707  
  Keywords scattering; atmospheric effects; light pollution; site testing; DMSP  
  Abstract We present the first World Atlas of the zenith artificial night sky brightness at sea level. Based on radiance-calibrated high-resolution DMSP satellite data and on accurate modelling of light propagation in the atmosphere, it provides a nearly global picture of how mankind is proceeding to envelop itself in a luminous fog. Comparing the Atlas with the United States Department of Energy (DOE) population density data base, we determined the fraction of population who are living under a sky of given brightness. About two-thirds of the World population and 99 per cent of the population in the United States (excluding Alaska and Hawaii) and European Union live in areas where the night sky is above the threshold set for polluted status. Assuming average eye functionality, about one-fifth of the World population, more than two-thirds of the United States population and more than one half of the European Union population have already lost naked eye visibility of the Milky Way. Finally, about one-tenth of the World population, more than 40 per cent of the United States population and one sixth of the European Union population no longer view the heavens with the eye adapted to night vision, because of the sky brightness.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 173  
Permanent link to this record
 

 
Author Cinzano, P.; Falchi, F.; Elvidge, C.D. url  doi
openurl 
  Title Moonlight Without The Moon Type Journal Article
  Year 1998 Publication Earth, Moon, and Planets Abbreviated Journal  
  Volume 85/86 Issue Pages 517-522  
  Keywords  
  Abstract Light pollution, the alteration of the natural light levels in the night environment produced by man-made light, is one of the most rapidly increasing threats to the natural environment. The fast growth of the night sky brightness due to light pollution not only is damaging the perception of the starry sky but it is silently altering even the perception of the moonlight nights by mankind. The cyclic alternation between the new Moon's dark sky with thousand of stars and the moonlight sky, less dark but always full of stars among which our satellite moves, is rapidly changing toward a perennial artificial moonlight due to the man-made light wasted in the atmosphere. The Moon periodically will appear inside the same perennially luminous sky from which stars will have almost disappeared. Here we present a map showing artificial moonlight levels in North America and some statistical results.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9295 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 174  
Permanent link to this record
 

 
Author Cinzano, P.; Falchi, F.; Elvidge, C.D. url  doi
openurl 
  Title Naked-eye star visibility and limiting magnitude mapped from DMSP-OLS satellite data Type Journal Article
  Year 2001 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Monthly Notices of the Royal Astronomical Society  
  Volume 323 Issue 1 Pages 34-46  
  Keywords light at night; remote sensing; GTOPO30; DMSP; light pollution; modeling; mapping  
  Abstract We extend the method introduced by Cinzano et al. (2000a) to map the artificial sky brightness in large territories from DMSP satellite data, in order to map the naked eye star visibility and telescopic limiting magnitudes. For these purposes we take into account the altitude of each land area from GTOPO30 world elevation data, the natural sky brightness in the chosen sky direction, based on Garstang modelling, the eye capability with naked eye or a telescope, based on the Schaefer (1990) and Garstang (2000b) approach, and the stellar extinction in the visual photometric band. For near zenith sky directions we also take into account screening by terrain elevation. Maps of naked eye star visibility and telescopic limiting magnitudes are useful to quantify the capability of the population to perceive our Universe, to evaluate the future evolution, to make cross correlations with statistical parameters and to recognize areas where astronomical observations or popularisation can still acceptably be made. We present, as an application, maps of naked eye star visibility and total sky brightness in V band in Europe at the zenith with a resolution of approximately 1 km.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 175  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: