|   | 
Details
   web
Records
Author Walker, W.H. 2nd; Borniger, J.C.; Gaudier-Diaz, M.M.; Hecmarie Melendez-Fernandez, O.; Pascoe, J.L.; Courtney DeVries, A.; Nelson, R.J.
Title (up) Acute exposure to low-level light at night is sufficient to induce neurological changes and depressive-like behavior Type Journal Article
Year 2019 Publication Molecular Psychiatry Abbreviated Journal Mol Psychiatry
Volume Issue Pages s41380-019-0430-4
Keywords Human health; physiology; brain
Abstract The advent and wide-spread adoption of electric lighting over the past century has profoundly affected the circadian organization of physiology and behavior for many individuals in industrialized nations; electric lighting in homes, work environments, and public areas have extended daytime activities into the evening, thus, increasing night-time exposure to light. Although initially assumed to be innocuous, chronic exposure to light at night (LAN) is now associated with increased incidence of cancer, metabolic disorders, and affective problems in humans. However, little is known about potential acute effects of LAN. To determine whether acute exposure to low-level LAN alters brain function, adult male, and female mice were housed in either light days and dark nights (LD; 14 h of 150 lux:10 h of 0 lux) or light days and low level light at night (LAN; 14 h of 150 lux:10 h of 5 lux). Mice exposed to LAN on three consecutive nights increased depressive-like responses compared to mice housed in dark nights. In addition, female mice exposed to LAN increased central tendency in the open field. LAN was associated with reduced hippocampal vascular endothelial growth factor-A (VEGF-A) in both male and female mice, as well as increased VEGFR1 and interleukin-1beta mRNA expression in females, and reduced brain derived neurotrophic factor mRNA in males. Further, LAN significantly altered circadian rhythms (activity and temperature) and circadian gene expression in female and male mice, respectively. Altogether, this study demonstrates that acute exposure to LAN alters brain physiology and can be detrimental to well-being in otherwise healthy individuals.
Address Department of Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA
Corporate Author Thesis
Publisher Nature Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-4184 ISBN Medium
Area Expedition Conference
Notes PMID:31138889 Approved no
Call Number IDA @ john @ Serial 2509
Permanent link to this record
 

 
Author Walker, W.H. 2nd; Borniger, J.C.; Gaudier-Diaz, M.M.; Hecmarie Melendez-Fernandez, O.; Pascoe, J.L.; Courtney DeVries, A.; Nelson, R.J.
Title (up) Acute exposure to low-level light at night is sufficient to induce neurological changes and depressive-like behavior Type Journal Article
Year 2019 Publication Molecular Psychiatry Abbreviated Journal Mol Psychiatry
Volume Issue Pages s41380
Keywords Animals; mouse models; mood disorders; Human Health
Abstract The advent and wide-spread adoption of electric lighting over the past century has profoundly affected the circadian organization of physiology and behavior for many individuals in industrialized nations; electric lighting in homes, work environments, and public areas have extended daytime activities into the evening, thus, increasing night-time exposure to light. Although initially assumed to be innocuous, chronic exposure to light at night (LAN) is now associated with increased incidence of cancer, metabolic disorders, and affective problems in humans. However, little is known about potential acute effects of LAN. To determine whether acute exposure to low-level LAN alters brain function, adult male, and female mice were housed in either light days and dark nights (LD; 14 h of 150 lux:10 h of 0 lux) or light days and low level light at night (LAN; 14 h of 150 lux:10 h of 5 lux). Mice exposed to LAN on three consecutive nights increased depressive-like responses compared to mice housed in dark nights. In addition, female mice exposed to LAN increased central tendency in the open field. LAN was associated with reduced hippocampal vascular endothelial growth factor-A (VEGF-A) in both male and female mice, as well as increased VEGFR1 and interleukin-1beta mRNA expression in females, and reduced brain derived neurotrophic factor mRNA in males. Further, LAN significantly altered circadian rhythms (activity and temperature) and circadian gene expression in female and male mice, respectively. Altogether, this study demonstrates that acute exposure to LAN alters brain physiology and can be detrimental to well-being in otherwise healthy individuals.
Address Department of Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-4184 ISBN Medium
Area Expedition Conference
Notes PMID:31138889; PMCID:PMC6881534 Approved no
Call Number GFZ @ kyba @ Serial 2768
Permanent link to this record
 

 
Author Stockl, A.L.; Ribi, W.A.; Warrant, E.J.
Title (up) Adaptations for nocturnal and diurnal vision in the hawkmoth lamina Type Journal Article
Year 2015 Publication The Journal of Comparative Neurology Abbreviated Journal J Comp Neurol
Volume 524 Issue 1 Pages 160–175
Keywords vision, animals
Abstract Animals use vision over a wide range of light intensities, from dim starlight to bright sunshine. For animals active in very dim light the visual system is challenged by several sources of visual noise. Adaptations in the eyes, as well as in the neural circuitry, have evolved to suppress the noise and enhance the visual signal, thereby improving vision in dim light. Among neural adaptations, spatial summation of visual signals from neighboring processing units is suggested to increase the reliability of signal detection and thus visual sensitivity. In insects, the likely neural candidates for carrying out spatial summation are the lamina monopolar cells (LMCs) of the first visual processing area of the insect brain (the lamina). We have classified LMCs in three species of hawkmoths having considerably different activity periods but very similar ecology – the diurnal Macroglossum stellatarum, the nocturnal Deilephila elpenor and the crepuscular-nocturnal Manduca sexta. Using this classification, we investigated the anatomical adaptations of hawkmoth LMCs suited for spatial summation. We found that specific types of LMCs have dendrites extending to significantly more neighboring cartridges in the two nocturnal and crepuscular species than in the diurnal species, making these LMC types strong candidates for spatial summation. Moreover, while the absolute number of cartridges visited by the LMCs differed between the two dim-light species, their dendritic extents were very similar in terms of visual angle, possibly indicating a limiting spatial acuity. Interestingly, the overall size of the lamina neuropil did not correlate with the size of its LMCs. This article is protected by copyright. All rights reserved.
Address Department of Biology, Lund University, 22362, Lund, Sweden
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9967 ISBN Medium
Area Expedition Conference
Notes PMID:26100612 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 1190
Permanent link to this record
 

 
Author Halfwerk, W.; Blaas, M.; Kramer, L.; Hijner, N.; Trillo, P.A.; Bernal, X.E.; Page, R.A.; Goutte, S.; Ryan, M.J.; Ellers, J.
Title (up) Adaptive changes in sexual signalling in response to urbanization Type Journal Article
Year 2018 Publication Nature Ecology & Evolution Abbreviated Journal Nat Ecol Evol
Volume 3 Issue Pages 374-380
Keywords Animals
Abstract Urbanization can cause species to adjust their sexual displays, because the effectiveness of mating signals is influenced by environmental conditions. Despite many examples that show that mating signals in urban conditions differ from those in rural conditions, we do not know whether these differences provide a combined reproductive and survival benefit to the urban phenotype. Here we show that male tungara frogs have increased the conspicuousness of their calls, which is under strong sexual and natural selection by signal receivers, as an adaptive response to city life. The urban phenotype consequently attracts more females than the forest phenotype, while avoiding the costs that are imposed by eavesdropping bats and midges, which we show are rare in urban areas. Finally, we show in a translocation experiment that urban frogs can reduce risk of predation and parasitism when moved to the forest, but that forest frogs do not increase their sexual attractiveness when moved to the city. Our findings thus reveal that urbanization can rapidly drive adaptive signal change via changes in both natural and sexual selection pressures.
Address Department of Ecological Science, Vrije Universiteit, Amsterdam, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-334X ISBN Medium
Area Expedition Conference
Notes PMID:30532046 Approved no
Call Number GFZ @ kyba @ Serial 2136
Permanent link to this record
 

 
Author Bhukya, K. A., Ramasubbareddy, S., Govinda, K., & Srinivas, T. A. S.
Title (up) Adaptive Mechanism for Smart Street Lighting System Type Journal Article
Year 2019 Publication Smart Intelligent Computing and Applications Abbreviated Journal
Volume 160 Issue Pages 69-76
Keywords Lighting
Abstract The adaptive street light has the ability to adapt to the motion of cycles, cars and pedestrians. It uses motion as well as light sensors to detect the traffic and light around. It dims when there is no movement on the road, and is brightened when there is any activity. Smart street lights are very dissimilar from the old methods of lighting. It is an automated system that will be able to automate the streets. The main objective of these lights is to decrease the utilization of power, while no activity is detected on the street. It will be switched ON while there are pedestrians and cars on the street or else they will get dimmed to 20% of the brightness. The proposed approach gives a method to conserve power by using the PIR sensors to sense the incoming traffic and hence turning ON a cluster of lights surrounding the traffic. As the traffic is passing by, the street lights left behind will dim on its own. Hence, a lot of power can be conserved. Also, during the day time when there is no need of light the LDR sensor will sense the light and the light will remain switched OFF. This smart street light system comes under the domain of smart city.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2723
Permanent link to this record