|   | 
Details
   web
Records
Author Bennie, J.; Davies, T.W.; Cruse, D.; Inger, R.; Gaston, K.J.; Lewis, O.
Title (up) Artificial light at night causes top-down and bottom-up trophic effects on invertebrate populations Type Journal Article
Year 2018 Publication Journal of Applied Ecology Abbreviated Journal J Appl Ecol
Volume 55 Issue 6 Pages 2698-2706
Keywords Ecology; Animals; Plants
Abstract Globally, many ecosystems are exposed to artificial light at night. Nighttime lighting has direct biological impacts on species at all trophic levels. However, the effects of artificial light on biotic interactions remain, for the most part, to be determined.

We exposed experimental mesocosms containing combinations of grassland plants and invertebrate herbivores and predators to illumination at night over a 3‐year period to simulate conditions under different common forms of street lighting.

We demonstrate both top‐down (predation‐controlled) and bottom‐up (resource‐controlled) impacts of artificial light at night in grassland communities. The impacts on invertebrate herbivore abundance were wavelength‐dependent and mediated via other trophic levels.

White LED lighting decreased the abundance of a generalist herbivore mollusc by 55% in the presence of a visual predator, but not in its absence, while monochromatic amber light (with a peak wavelength similar to low‐pressure sodium lighting) decreased abundance of a specialist herbivore aphid (by 17%) by reducing the cover and flower abundance of its main food plant in the system. Artificial white light also significantly increased the food plant's foliar carbon to nitrogen ratio.

We conclude that exposure to artificial light at night can trigger ecological effects spanning trophic levels, and that the nature of such impacts depends on the wavelengths emitted by the lighting technology employed.

Policy implications. Our results confirm that artificial light at night, at illuminance levels similar to roadside vegetation, can have population effects mediated by both top‐down and bottom‐up effects on ecosystems. Given the increasing ubiquity of light pollution at night, these impacts may be widespread in the environment. These results underline the importance of minimizing ecosystem disruption by reducing light pollution in natural and seminatural ecosystems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8901 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2086
Permanent link to this record
 

 
Author Grubisic, M.; Singer, G.; Bruno, M.C.; Van Grunsven, R.H.A.; Manfrin, A.; Monaghan, M.T.; Hölker, F.
Title (up) Artificial light at night decreases biomass and alters community composition of benthic primary producers in a sub-alpine stream Type Journal Article
Year 2017 Publication Limnology and Oceanography Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Artificial light at night (ALAN) is recognized as a contributor to environmental change and a biodiversity threat on a global scale. Despite its widespread use and numerous potential ecological effects, few studies have investigated the impacts on aquatic ecosystems and primary producers. Light is a source of energy and information for benthic autotrophs that form the basis of food webs in clear, shallow waters. Artificial night-time illumination may thus affect biomass and community composition of primary producers. We experimentally mimicked the light conditions of a light-polluted area (approximately 20 lux, white LED) in streamside flumes on a sub-alpine stream. We compared the biomass and community composition of periphyton grown under ALAN with periphyton grown under a natural light regime in two seasons using communities in early (up to 3 weeks) and later (4â??6 weeks) developmental stages. In early periphyton, ALAN decreased the biomass of autotrophs in both spring (57% at 3 weeks) and autumn (43% at 2 weeks), decreased the proportion of cyanobacteria in spring (54%), and altered the proportion of diatoms in autumn (11% decrease at 2 weeks and 5% increase at 3 weeks). No effects of ALAN were observed for later periphyton. Further work is needed to test whether streams with frequent physical disturbances that reset the successional development of periphyton are more affected by ALAN than streams with more stable conditions. As periphyton is a fundamental component of stream ecosystems, the impact of ALAN might propagate to higher trophic levels and/or affect critical ecosystem functions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 1735
Permanent link to this record
 

 
Author Dananay, K.L.; Benard, M.F.
Title (up) Artificial light at night decreases metamorphic duration and juvenile growth in a widespread amphibian Type Journal Article
Year 2018 Publication Proceedings of the Royal Society B: Biological Sciences Abbreviated Journal Proc. R. Soc. B
Volume 285 Issue 1882 Pages 20180367
Keywords Animals
Abstract Artificial light at night (ALAN) affects over 20% of the earth's surface and is estimated to increase 6% per year. Most studies of ALAN have focused on a single mechanism or life stage. We tested for indirect and direct ALAN effects that occurred by altering American toads' (Anaxyrus americanus) ecological interactions or by altering toad development and growth, respectively. We conducted an experiment over two life stages using outdoor mesocosms and indoor terraria. In the first phase, the presence of ALAN reduced metamorphic duration and periphyton biomass. The effects of ALAN appeared to be mediated through direct effects on toad development, and we found no evidence for indirect effects of ALAN acting through altered ecological interactions or colonization. In the second phase, post-metamorphic toad growth was reduced by 15% in the ALAN treatment. Juvenile-stage ALAN also affected toad activity: in natural light, toads retreated into leaf litter at night whereas ALAN toads did not change behaviour. Carry-over effects of ALAN were also present; juvenile toads that had been exposed to larval ALAN exhibited marginally increased activity. In this time frame and system, our experiments suggested ALAN's effects act primarily through direct effects, rather than indirect effects, and can persist across life stages.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1951
Permanent link to this record
 

 
Author Robert, K.A.; Lesku, J.A.; Partecke, J.; Chambers, B.
Title (up) Artificial light at night desynchronizes strictly seasonal reproduction in a wild mammal Type Journal Article
Year 2015 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci
Volume 282 Issue 1816 Pages
Keywords Animals; Macropus eugenii; anthropogenic disturbance; circadian disruption; light pollution; melatonin; trophic mismatch; ecology; wildlife
Abstract Change in day length is an important cue for reproductive activation in seasonally breeding animals to ensure that the timing of greatest maternal investment (e.g. lactation in mammals) coincides with favourable environmental conditions (e.g. peak productivity). However, artificial light at night has the potential to interfere with the perception of such natural cues. Following a 5-year study on two populations of wild marsupial mammals exposed to different night-time levels of anthropogenic light, we show that light pollution in urban environments masks seasonal changes in ambient light cues, suppressing melatonin levels and delaying births in the tammar wallaby. These results highlight a previously unappreciated relationship linking artificial light at night with induced changes in mammalian reproductive physiology, and the potential for larger-scale impacts at the population level.
Address School of Animal Biology, The University of Western Australia, Perth 6009, Australia
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:26423847 Approved no
Call Number IDA @ john @ Serial 1286
Permanent link to this record
 

 
Author Raap, T.; Pinxten, R.; Eens, M.
Title (up) Artificial light at night disrupts sleep in female great tits (Parus major) during the nestling period, and is followed by a sleep rebound Type Journal Article
Year 2016 Publication Environmental Pollution (Barking, Essex : 1987) Abbreviated Journal Environ Pollut
Volume 215 Issue Pages 125-134
Keywords Biology
Abstract Artificial light at night has been linked to a wide variety of physiological and behavioural consequences in humans and animals. Given that little is known about the impact of light pollution on sleep in wild animals, we tested how experimentally elevated light levels affected sleep behaviour of female songbirds rearing 10 day old chicks. Using a within-subject design, individual sleep behaviour was observed over three consecutive nights in great tits (Parus major), with females sleeping in a natural dark situation on the first and third night, whereas on the second night they were exposed to a light-emitting diode (1.6 lux). Artificial light in the nest box dramatically and significantly affected sleep behaviour, causing females to fall asleep later (95 min; while entry time was unaffected), wake up earlier (74 min) and sleep less (56%). Females spent a greater proportion of the night awake and the frequency of their sleep bouts decreased, while the length of their sleep bouts remained equal. Artificial light also increased begging of chicks at night, which may have contributed to the sleep disruption in females or vice versa. The night following the light treatment, females slept 25% more compared to the first night, which was mainly achieved by increasing the frequency of sleep bouts. Although there was a consistent pattern in how artificial light affected sleep, there was also large among-individual variation in how strongly females were affected. When comparing current results with a similar experiment during winter, our results highlight differences in effects between seasons and underscore the importance of studying light pollution during different seasons. Our study shows that light pollution may have a significant impact on sleep behaviour in free-living animals during the reproductive season, which may provide a potential mechanism by which artificial light affects fitness.
Address Department of Biology, Behavioural Ecology & Ecophysiology Group, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes PMID:27179331 Approved no
Call Number LoNNe @ kyba @ Serial 1451
Permanent link to this record