toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Agarwal, N.; Srivastava, S.; Malik, S.; Rani, S.; Kumar, V. url  doi
openurl 
  Title (up) Altered light conditions during spring: Effects on timing of migration and reproduction in migratory redheaded bunting (Emberiza bruniceps) Type Journal Article
  Year 2015 Publication Biological Rhythm Research Abbreviated Journal Biological Rhythm Research  
  Volume 46 Issue 5 Pages 647-657  
  Keywords Animals  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0929-1016 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 1166  
Permanent link to this record
 

 
Author Riedel, C.S.; Georg, B.; Fahrenkrug, J.; Hannibal, J. url  doi
openurl 
  Title (up) Altered light induced EGR1 expression in the SCN of PACAP deficient mice Type Journal Article
  Year 2020 Publication PloS one Abbreviated Journal PLoS One  
  Volume 15 Issue 5 Pages e0232748  
  Keywords Animals  
  Abstract The brain's biological clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus and generates circadian rhythms in physiology and behavior. The circadian clock needs daily adjustment by light to stay synchronized (entrained) with the astronomical 24 h light/dark cycle. Light entrainment occurs via melanopsin expressing retinal ganglion cells (mRGCs) and two neurotransmitters of the retinohypothalamic tract (RHT), PACAP and glutamate, which transmit light information to the SCN neurons. In SCN neurons, light signaling involves the immediate-early genes Fos, Egr1 and the clock genes Per1 and Per2. In this study, we used PACAP deficient mice to evaluate PACAP's role in light induced gene expression of EGR1 in SCN neurons during early (ZT17) and late (ZT23) subjective night at high (300 lux) and low (10 lux) white light exposure. We found significantly lower levels of both EGR1 mRNA and protein in the SCN in PACAP deficient mice compared to wild type mice at early subjective night (ZT17) exposed to low but not high light intensity. No difference was found between the two genotypes at late night (ZT23) at neither light intensities. In conclusion, light mediated EGR1 induction in SCN neurons at early night at low light intensities is dependent of PACAP signaling. A role of PACAP in shaping synaptic plasticity during light stimulation at night is discussed.  
  Address Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen NV, Denmark  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32379800; PMCID:PMC7205239 Approved no  
  Call Number GFZ @ kyba @ Serial 2915  
Permanent link to this record
 

 
Author Mohamad, Y.; Haim, A.; Elsalam, Z.A. url  doi
openurl 
  Title (up) Altered metabolic and hormonal responses in male rats exposed to acute bright light-at-night associated with global DNA hypo-methylation Type Journal Article
  Year 2019 Publication Journal of Photochemistry and Photobiology B: Biology Abbreviated Journal Journal of Photochemistry and Photobiology B: Biology  
  Volume 194 Issue Pages 107-118  
  Keywords Animals; mouse models  
  Abstract The association between light pollution and disruption of daily rhythms, metabolic and hormonal disorders, as well as cancer progression is well-recognized. These adverse effects could be due to nocturnal melatonin suppression. The signaling pathway by which light pollution affects metabolism and endocrine responses is unclear. We studied the effects of artificial light at night (ALAN1) on body mass, food and water intake, daily rhythms of body temperature, serum glucose and insulin in male rats. Daily rhythms of urine production and urinary 6-sulfatoxymelatonin (6-SMT2), as well as global DNA methylation in pancreas and liver tissues were also assessed. Mass gain was higher in ALAN rats compared with controls. Food intake, water consumption, glucose, insulin, and 6-SMT levels markedly lessened in response to ALAN. Conversely, urine production and body temperature were elevated in ALAN rats compared with controls. Significant 24-h rhythms were detected for all variables that were altered in mesor, amplitude, and acrophase occurrences under ALAN conditions. DNA hypo-methylation was detected in ALAN pancreatic tissue compared with controls, but not in hepatic tissue. Overall, ALAN affects metabolic and hormonal physiology in different levels in which flexible crosstalk between melatonin and both epigenetics and metabolic levels expressed as body temperature rhythm, is suggested to mediate the environmental exposure at the molecular level and subsequently physiology is altered. The flexibility of epigenetic modifications provides a potential therapeutic target for rectifying ALAN adverse effects by epigenetic markers such as melatonin and behavioral lifestyle interventions for confining ALAN exposures as much as possible.  
  Address Department of Human Biology, University of Haifa, Mount Carmel, Haifa 3498838, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1011-1344 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2282  
Permanent link to this record
 

 
Author Degen, T.; Hovestadt, T.; Mitesser, O.; Hölker, F. url  doi
openurl 
  Title (up) Altered sex-specific mortality and female mating success: ecological effects and evolutionary responses Type Journal Article
  Year 2017 Publication Ecosphere Abbreviated Journal Ecosphere  
  Volume 8 Issue 5 Pages e01820  
  Keywords Insects; nocturnal insects; mating behaviour  
  Abstract Theory predicts that males and females should often join the mating pool at different times (sexual dimorphism in timing of emergence [SDT]) as the degree of SDT affects female mating success. We utilize an analytical model to explore (1) how important SDT is for female mating success, (2) how mating success might change if either sex's mortality (abruptly) increases, and (3) to what degree evolutionary responses in SDT may be able to mitigate the consequences of such mortality increase. Increasing male pre-mating mortality has a non-linear effect on the fraction of females mated: The effect is initially weak, but at some critical level a further increase in male mortality has a stronger effect than a similar increase in female mortality. Such a change is expected to impose selection for reduced SDT. Increasing mortality during the mating season has always a stronger effect on female mating success if the mortality affects the sex that emerges first. This bias results from the fact that enhancing mortality of the earlier emerging sex reduces femaleâ??male encounter rates. However, an evolutionary response in SDT may effectively mitigate such consequences. Further , if considered independently for females and males, the predicted evolutionary response in SDT could be quite dissimilar. The difference between female and male evolutionary response in SDT leads to marked differences in the fraction of fertilized females under certain conditions. Our model may provide general guidelines for improving harvesting of populations, conservation management of rare species under altered environmental conditions, or maintaining long-term efficiency of pest-control measures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2150-8925 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ schroer @ Serial 1663  
Permanent link to this record
 

 
Author Yao, J.Q.; Zhai, H.R.; Tang, X.M.; Gao, X.M.; Yang, X.D. url  doi
openurl 
  Title (up) Amazon Fire Monitoring and Analysis Based on Multi-source Remote Sensing Data Type Journal Article
  Year 2020 Publication IOP Conference Series: Earth and Environmental Science Abbreviated Journal IOP Conf. Ser.: Earth Environ. Sci.  
  Volume 474 Issue Pages 042025  
  Keywords Remote Sensing  
  Abstract In August 2019, a large-scale fire broke out in the Amazon rainforest, bringing serious harm to the ecosystem and human beings. In order to accurately monitor the dynamic change of forest fire in Amazon rainforest and analyse the impact of fire spreading and extinction on the environment, firstly, based on NPP VIIRS data covering the Amazon fire area, the sliding window threshold method is adopted to extract the fire point, and the cause of fire change is monitored and analysed according to the time series. Secondly, based on the time series of CALIPSO data, the vertical distribution changes of atmospheric pollutants in the amazon fire area are analysed, and the comprehensive analysis is carried out by combining NPP VIIRS data. The experimental results show that only NPP VIIRS data is used to predict the fire, and the combination of CALIPSO data can better monitor the forest fire and predict the fire development trend. The combination of optical image and laser radar has greater advantages in dynamic fire monitoring and fire impact analysis. The method described in this paper can provide basic data reference for real-time and accurate prediction of forest fires and provide new ideas for dynamic fire monitoring.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-1315 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2927  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: