|   | 
Details
   web
Records
Author Kunz, T.H.; Gauthreaux, S.A.J.; Hristov, N.I.; Horn, J.W.; Jones, G.; Kalko, E.K.V.; Larkin, R.P.; McCracken, G.F.; Swartz, S.M.; Srygley, R.B.; Dudley, R.; Westbrook, J.K.; Wikelski, M.
Title (up) Aeroecology: probing and modeling the aerosphere Type Journal Article
Year 2008 Publication Integrative and Comparative Biology Abbreviated Journal Integr Comp Biol
Volume 48 Issue 1 Pages 1-11
Keywords aeroecology; light; biology
Abstract Aeroecology is a discipline that embraces and integrates the domains of atmospheric science, ecology, earth science, geography, computer science, computational biology, and engineering. The unifying concept that underlies this emerging discipline is its focus on the planetary boundary layer, or aerosphere, and the myriad of organisms that, in large part, depend upon this environment for their existence. The aerosphere influences both daily and seasonal movements of organisms, and its effects have both short- and long-term consequences for species that use this environment. The biotic interactions and physical conditions in the aerosphere represent important selection pressures that influence traits such as size and shape of organisms, which in turn facilitate both passive and active displacements. The aerosphere also influences the evolution of behavioral, sensory, metabolic, and respiratory functions of organisms in a myriad of ways. In contrast to organisms that depend strictly on terrestrial or aquatic existence, those that routinely use the aerosphere are almost immediately influenced by changing atmospheric conditions (e.g., winds, air density, precipitation, air temperature), sunlight, polarized light, moon light, and geomagnetic and gravitational forces. The aerosphere has direct and indirect effects on organisms, which often are more strongly influenced than those that spend significant amounts of time on land or in water. Future advances in aeroecology will be made when research conducted by biologists is more fully integrated across temporal and spatial scales in concert with advances made by atmospheric scientists and mathematical modelers. Ultimately, understanding how organisms such as arthropods, birds, and bats aloft are influenced by a dynamic aerosphere will be of importance for assessing, and maintaining ecosystem health, human health, and biodiversity.
Address *Center for Ecology and Conservation Biology, Department of Biology, Boston University, Boston, MA 02215, USA; Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK; Department of Experimental Ecology, University of Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany; Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820, USA; Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-1610, USA; Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA; **USDA-ARS, 1500 N. Central Avenue, Sidney, MT 59270, USA; Department of Integrative Biology, University of California, Berkeley, CA 94720, USA; USDA-ARS, 2771 F&B Road, College Station, TX 77845, USA and Department of Ecology and Evolutionary Biology, Princeton University, Princeton NJ 08544, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1540-7063 ISBN Medium
Area Expedition Conference
Notes PMID:21669768 Approved no
Call Number IDA @ john @ Serial 19
Permanent link to this record
 

 
Author Kocifaj, M.; Bará, S.
Title (up) Aerosol characterization using satellite remote sensing of light pollution sources at night Type Journal Article
Year 2020 Publication Monthly Notices of the Royal Astronomical Society: Letters Abbreviated Journal MNRAS
Volume 495 Issue 1 Pages L76-L80
Keywords Skyglow; Radiative transfer; Light scattering; Aerosols
Abstract A demanding challenge in atmospheric research is the night-time characterization of aerosols using passive techniques, that is, by extracting information from scattered light that has not been emitted by the observer. Satellite observations of artificial night-time lights have been used to retrieve some basic integral parameters, like the aerosol optical depth. However, a thorough analysis of the scattering processes allows one to obtain substantially more detailed information on aerosol properties. In this letter, we demonstrate a practicable approach for determining the aerosol particle size number distribution function in the air column, based on the measurement of the angular radiance distribution of the scattered light emitted by night- time lights of cities and towns, recorded from low Earth orbit. The method is self-calibrating and does not require the knowledge of the absolute city emissions. The input radiance data are readily available from several spaceborne platforms, like the VIIRS-DNB radiometer onboard the Suomi-NPP satellite.
Address Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska Dolina, 842 48 Bratislava, Slovakia; Miroslav.Kocifaj(at)savba.sk
Corporate Author Thesis
Publisher OUP Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1745-3925 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2910
Permanent link to this record
 

 
Author Rydell, J.; Eklöf, J.; Sánchez-Navarro, S.
Title (up) Age of enlightenment: long-term effects of outdoor aesthetic lights on bats in churches Type Journal Article
Year 2017 Publication Royal Society Open Science Abbreviated Journal R. Soc. open sci.
Volume 4 Issue 8 Pages 161077
Keywords Animals
Abstract We surveyed 110 country churches in south-western Sweden for presence of brown long-eared bats Plecotus auritus in summer 2016 by visual inspection and/or evening emergence counts. Each church was also classified according to the presence and amount of aesthetic directional lights (flood-lights) aimed on its walls and tower from the outside. Sixty-one of the churches had previously been surveyed by one of us (J.R.) between 1980 and 1990, before lights were installed on Swedish churches, using the same methods. Churches with bat colonies had decreased significantly in frequency from 61% in 1980s to 38% by 2016. All abandoned churches had been fitted with flood-lights in the period between the two surveys. The loss of bat colonies from lit churches was highly significant and most obvious when lights were applied from all directions, leaving no dark corridor for the bats to leave and return to the roost. In contrast, in churches that were not lit, all of 13 bat colonies remained after 25+ years between the surveys. Lighting of churches and other historical buildings is a serious threat to the long-term survival and reproduction of light-averse bats such as Plecotus spp. and other slow-flying species. Bat roosts are strictly protected according to the EU Habitats Directive and the EUROBATS agreement. Lighting of buildings for aesthetic purposes is becoming a serious environmental issue, because important bat roosts are destroyed in large numbers, and the problem should be handled accordingly. As a start, installation of flood-lights on historical buildings should at least require an environmental impact assessment (EIA).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2054-5703 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @; GFZ @ kyba @ Serial 1698
Permanent link to this record
 

 
Author Aschoff, J.
Title (up) Aktivitätsmuster der Tagesperiodik Type Journal Article
Year 1957 Publication Die Naturwissenschaften Abbreviated Journal
Volume 44 Issue 13 Pages 361-367
Keywords Human Health
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 709
Permanent link to this record
 

 
Author Kennard, D.C.; Chamberlin, V.D.
Title (up) All-night Light for Layers Type Report
Year 1931 Publication Abbreviated Journal
Volume Bulletin 476 Issue Pages
Keywords Animals
Abstract
Address
Corporate Author Ohio Agricultural Experiment Station Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2392
Permanent link to this record